Living with bees

My friend Radim has been a beekeeper for 5 years. He’s living in a forested area where his bees are quite for themselves. He started with Elgon bees, but not the very best varieties. He has though been fortunate as there probably are some feral bees a mile away or so which are contributing with good drones for mating. A swarm I took from a feral colony about that distance from him had features showing Elgon influence. This has made him, me and our bees happy.:)

One thing about Radim that has fascinated me is his curiousity of how bees function on their own. He wants to learn their way of living to better help them and also just for the satisfaction of knowing.

 One of his colonies is living i a small skep of straw insulated with cow dung.

He has put some colonies on four boxes medium (langstroth width and about 2/3 of Langstroth full depth – 448 x 159 mm) somewhat away in the forest. They have been allowed to build their own combs without the help of wax foundation. He takes no honey and gives as little sugar solution as possible. Last year he had to complement their food reserves for winter as the season was very bad. He also has a small skep insulated with cow dung. He hasn’t treated those hives against mites. He observes what they are doing and not doing.

He told me he caught a swarm in 2015 in another area than his. Obviously this swarm were of another kind of stock as the color of the bees was light in color, yellow. He brought it home to use it for producing splits and mating nucs as he had heard this type of bee didn’t produce as good a crop, but a lot of bees. And this colony really did produce bees. Already in February, 2016 when it still was winter, it had started brooding a lot. Soon he had to feed it so it shouldn’t run out of food.

He decided he didn’t want this type of trait in drones flying in his home area as he was going to let his virgin queens mate there. He moved the colony, actually to a better area concerning nectar sources. The weather was not good for a honey crop in 2016 and he went for a holiday in June. Normally this month bees have no problem finding nectar so he thought there would be no problems for this colony. But when he came back from the holiday a couple of weeks later the yellow colony on two boxes had 7 full combs of capped brood. It had given splits and bees to mating nucs. Besides the 7 capped combs it had not a single drop of food and not one bee alive. The colony was dead.

The other bees Radim has behaves very differently, especially his ”wild” ”feral” bees. The colony in the little skep has wintered three winters and is thriving. The first year Radim fed it some sugar solution so it got enough food for winter. The volume is small and it can’t hold a lot of food – brood or bees either. In 2015 it swarmed three times and Radim got in this way three new colonies.

 It was a lot of beees in the skep in 2016, but they didn’t swarm.

In 2016 in June the bee population was big and bees were sometimes covering the outside of the skep and he expected a swarm, that though didn’t come. In late June the bees almost stopped flying and did nothing. They had apparently decided the season was over and were waiting for winter and next season. And the season was really over.

 At the end of June the bees in the skep decided the season was over. And it really was. No more real flow that year.

No more good honeyflow that year. The skep was heavy of honey. The bees the rest of the season were just sitting by the entrance (and inside of course) watching (and maybe meditating).

 The bees were cool the rest of the season and waited for next season. Checking what’s up now end then. Here in January 2017.

 The “feral” colonies on medium boxes behaved like the bees in the skep. Here’s one of them somewhat on its own in the forest.

One of the four box ”feral” hives was behaving in an identical way. This hive has the entrance on the middle of the wall of the second box. The bees anyway clean the bottom well from debris. The combs in the first box consists of almost only drone comb. In winter 2016 the bees are sitting close to the entrance in the second box and also in the third. The fourth box is full of honey and some additional sugar for winter feed. When you look from above you can’t see the bees, but you can hear them, a soft buzz.

 Through the inspection door at the back of the colony he can see the combs in the first box. Here the bees can bee seen sitting close to the entrance in the second box.

Even when the sun is shining ritght onto the bees close to the entrance (the sun is low above the horizon in winter in Sweden) they don’t move and come out. Once in a while when he looked into the entrance he could see a bee move around a little and make its way into the cluster.

In January on a sunny day he could see one bee coming out from that hive, fly up against the sun, higher and higher, and never return. It was a bee that had warmed the cluster with its muscle movements until it had come close to being worn out having done what had been it’s task in life, keeping its mates alive creating warmth. Now its engine had come to its end and the bee went up to the heaven for bees.

Daughter of the feral queen

Karin is a new beekeeper. She got a split from me with a daughter of the swarm that came from the wall of one of her houses, an unheated older, kind of summerhouse. http://www.elgon.es/diary/?p=515

At the end of last summer, the new colony had grown strongly to three square shallow boxes. Then came the heather flow (Calluna vulgaris) and the bees filled a super above the queen excluder (the forth square shallow) with almost 20 kg of this thixotropic strong honey. And it collected about the same amount in the winter room (the three boxes). This honey is said to be difficult for bees to use as winter food.

It appeared a few wingless bees after harvest and this colony was the only of Karin had so as precaution it got 2 pieces thymol of dishcloth with thymol (2 x 5g) with about 12 kg of sugar in solution.

Karin&Hive Karin and her promising hive 13 March. 

The colony has been sitting still during winter, and heavy of feed. Some bees made a cleansing flight first week of March. It is visible on the hive top. Today, March 13th, we checked the colony together. With a long stick we scraped out a handful of dead bees. Not a bee came out and asked what we were doing. They sat still again. Temperature 36°F (2 °C) outside.

As we watched the bee cluster through a plastic sheet cover the bees sat quite tight but it was on the middle of the cluster. The bees have brood. We felt the weight. Lifted on one end of the hive and then the other. The colony was still heavy, but noticeably lighter than the last time we checked the weight. It has apparently made some brood during late winter/early spring. And it smells heather honey from the entrance of the hive. The colony is strong and looks very promising.

Karin Hive Daughter of the feral queen has wintered successfully on difficult thixotropic heather honey, preparing for a good season.

A passionate treatment free beekeeper 

Cory Stevens lives in southeast Missouri. There are some hives of hobbyists some miles from him. A larger beekeeper is 7-8 miles from him, but he uses Cory Stevens’ queen cells.

Cory family The whole Stevens family works together

Started with resistance traits

Cory Stevens ceased treatments for Varroa mites in most of his then 20 colonies 8 years ago.  6 years ago the number had grown to around 45 colonies. Then a few got some formic acid. Then no more treatment. When he stopped treating he had acquired queens of different origins with resistance traits, VSH from Tom Glenn and Pol line Hygienic Italians crossed with local ferals.

Cory Hive&comb Healthy colonies are the base for a thriving bee operation.

Low winter losses initially

Initially he had very low annual losses. He has brought in new stock every year besides breeding from his best lines. This hasn’t been good for the development of his stock so he has stopped that and will focus on selecting from his own best colonies. He will evaluate the need for bringing in new stock again later.

Cory odlingslist He will now focus on breeding from his own selected lines.

 

Increased winterlosses

Winter losses has always been lower than average nation wide. But the last years it has reached 30%.The winter of 2014-15 he lost 60% of 95 wintered. 45 of those (47%) were too small 5-frame nucs. The winter was severe and all of those nucs died. He says it was his fault, not the bees’. The winter losses 2015-16 will be much lower, it looks like cose to 20 %.

Initially some viruses

In the beginning when he saw more than a few bees with crippled wings (DWV) and K-wings (KWV) two different viruses, followers of Varroa and Tracheal mites respectively, he requeened those hives. Today he never sees any crippled wings. A few K-wings can be seen.

Removal of infested drone brood developed

Initially he didn’t see removal of varroa infested drone brood by the bees, only Varroa infested worker brood (in which the mites have offspring – VSH). But after breeding from the best survivors without any treatment he has seen this trait developing. He thinks that’s good as Varroa prefer drone brood and should continue doing it leaving as much worker brood as possible alone.

Cory drönarpuppor He has developed his stock to remove Varroa infested drone brood. It has simply turned up when breeding from the best survivors.

Some characteristics

He doesn’t use small cell combs, but standard rite cell foundation. He does use screened bottom board on several hives, but he doesn’t think they contribute that very much to Varroa control.

Planned focus

This season he will check natural downfall to look for the percentage of mutilated mites. He will also be utilizing liquid nitrogen to test for hygienic behavior for breeding candidates. Some of his virgins will be inseminated with semen from ankle biters (mite ankels) from Purdue University to test if this will contribute to his stock. He will also put out more swarm traps to hopefully catch feral swarms.

The goal

Cory wintered 120 colonies last autumn. The goal now is adding 25-30 per year until he reaches 5-600. Then he will “retire”.

More Varroa resistant bees

Darrel Jones lives in a rural area in northern Alabama. He is an enthusiastic grower of heirloom tomatoes, http://www.selectedplants.com/ Being a beekeeper as well is a natural fit with his gardening activities. Keeping bees treatment free was his goal from the time he first saw varroa mites in 1993.

Darrel Brandypeace Brandypeace, an heirloom tomato of Darrel Jones.

In 2004 he found a single feral swarm that showed significant varroa tolerance. He saw a lot of hygienic behavior and uncapped pupae with mites combined with very low overall mite numbers. It showed some unwanted characteristics as well with a high stinging tendency and yearly swarming. He concluded that the swarm was a combination of typical Apis mellifera mellifera with Italian bees. The bees flew at low temperatures and overwintered on very small amount of honey reserves.

Digital StillCamera A feral swarm

Combination partner

He purchased 10 queens of mite tolerant stock from Dann Purvis and used them as drone source colonies next year when he raised queens from his feral tolerant swarm. A couple of years he deliberately encouraged his new colonies to swarm planning they would stay in the vicinity and establish a good buffer of resistant drones for his virgins to mate with. He pushed more than 60 swarms into the woods.

Darrel Purvis

Darrel says there are many feral bees living in the forest around where he lives. And he catches some feral swarms in swarm traps every year. He could easily catch more if he wanted to.

Darrel natur Forest area in Alabama.

Breeding better beekeepers’ bees

There are about 100 managed colonies some miles east of him, but they are far enough away that there is no risk of interfering with the matings of his virgin queens. His conclusion is that they don’t interfere with the matings of his virgins. At least to any degree it matters.

Today he has 14 colonies in four apiaries. One apiary is far away (200 km) from any other bees including his own. This apiary gives him possibility to mate virgins somewhat differently or with an experimental drone source.

 

Bringing in external mite resistant stock

In 2011 he bought 3 queens from Mike Carpenter. Mike has been selecting for bees that groom and injure mites (Allogrooming, bees grooming each other from mites). Darrel wants to combine different varroa resistant traits in his stock and also reduce stinging tendency and swarming behavior.

He bought 3 queens from Bweaver in 2015. These bees are advertised as treatment free and from evaluation, are very hygienic. He found the resulting colonies to have good temper but they produced many swarms out of the normal swarming season.

The traits he is selecting for in his breeding are decent honey production with at least 60 pounds per year, very high mite tolerance, good quality honey, and overwintering with small clusters that build up very fast in spring. He selects against high tendency to swarm and aggressive behavior. He is not satisfied here yet, but working on it.

 

Africanized bees

Africanized bees are not currently present in North Alabama. Cold winter temperatures will prevent highly Africanized stock from surviving in his climate. They probably will be able to survive if crossed with bees that form clusters and winter well.

Bweaver is situated in Texas, declared as heavily Africanized. Their bees show significant introgression of traits but without the increased stinging impulse typical of Africanized bees. Darrel has decided to replace the 3 queens he bought from there, with his own stock, which winters better. He says Africanized bees have some good traits that could be exploited in combination breeding

 

Spreading the stock

His goal is to spread treatment free stock in the surrounding area. For this reason, he has sold a total of 25 colonies to 3 local beekeepers. They too are also keeping their bees treatment free. Darrel has an agreement with these three beekeepers to share stock when it comes to raising queens from the best breeders. In 2016, he plans to make another 10 colonies to start other beekeepers with mite tolerant bees.

 

Cell size

He uses standard Langstroth equipment with 11 frames (instead of 10) and 31 mm end bars (instead of 35 mm). He also uses small cell 4.9 mm wax foundation. He has a few colonies on 5.3 mm cell size and sees no difference in varroa tolerance or honey production. But the large cell colonies build up slower in spring. This is a bad factor for him and he doesn’t produce any more colonies on 5.3 mm.

Darrel Cellmätning How to measure cell size. You can do three ways on a comb, or foundation. Two ways diagonal as well as straight.

 

Infestation level

Darrel does not do any mite level checks. They are not necessary as he never has seen any big die offs or any bees with virus or wingless bees with DWV. He did check one random colony in 2014 to see how many mites were dropping naturally. Some other beekeepers had asked because they thought his bees were full of mites. This colony dropped 15 mites in 48 days proving them wrong. This makes a downfall of 0.3 mites per day.

 

Conditions and characteristics for Darrel Jones’ resistant stock

  • His area is relatively isolated from nonresistant bees.
  • A large population of feral resistant bees are established in the vicinity. This is quite a different situation compared especially to many European areas with bees.
  • He began with bee stocks that have excellent resistant traits.
  • He is not bringing in non-resistant bees in the form of queens, nucs, or colonies.
  • He is at most trying a few new queens from outside per year.
  • Small cell size is positive for colony build up but not necessary for resistance.
  • No treatments of any kind have been used for the last 11 years. Natural mite resistance in his bees is enough that they are thriving.
  • Yearly sales of honey pay all expenses to sustain his beekeeping activities.

 

 

A locally adapted Varroa resistant bee stock

Reid Hives

http://www.happyhollowhoney.com/

Richard Reid in a Virgina rural area in the US began with bees 1973. Beekeeping was simple, almost only it consisted of putting on and removing supers.

By 1995 all of his bees died due to the Varroa mite. He didn’t like drugs and didn’t use any in his colonies. A package bee colony he bought also died, after only two months. He couldn’t take more, dropped the bees, and devoted himself entirely to his construction business.

 

Survivors

After a number of years, he discovered that a few swarms had settled in a few stacks of supers. He went and looked at these wild bees sometimes and saw that they lived on. They lived and swarmed for 12 years unattended. After a few years he was encouraged and decided in 2008 to give beekeeping a chance again.

Reid feral12 One of the feral swarms settled in his stacks of supers.

There are no big farms nearby (thus not so much of agriculture chemicals) and some smaller beekeepers were at least 3 km (2 miles) away from his bees. So the conditions for healthy beekeeping was good.

 

Come back

He took care of the two feral swarms and began to expand the number of colonies using these, VSH, and Russian lines. He decided again not to use any kind of chemicals against Varroa. He didn’t buy any package bees or colonies from other areas (well, none at all). He multiplied his own colonies.

Reid SwarmtrapBox He also catches some swarms.
He bought however queens from different places which he believed to have resistance characteristics, VSH Carnica, Russian bees, and survivor bees from different places. He never monitored mite levels in his colonies.
Annual losses since 2008 have been between 10-15%, except after the winter of 2012-13 when 40% died. Each year, he had seen some wingless bees in some colonies. After the winter with the big losses he hasn’t seen any wingless bees. He has since bought fewer queens from outside and bred most from his own.
Every year he breeds from several “lines”, now about 18 of them. Queens are mated in his home yard. He makes many splits every year. Some of these get pupae of those he breeds. Some splits rear queens themselves.

Reid queen One of his queens.

 

Increasing

2015 he wintered 75 production colonies and 105 nucs. 30 of the colonies are kept in the vicinity of his home yard. There he keeps 17 of them. The nucs are also kept close in the home yard.

Reid Hives&Nucs Some of his nucs and production colonies in his home yard.

He has altogether nine apiaries. He wants to have at least 10 colonies in each apiary, but he hasn’t reached that goal yet for most of them. He is now aiming to increase his number of production colonies to 100 and the nucs to 150, as well as an additional 2 apiaries.
Regarding cell size, the great majority of brood frames in his colonies are Mann Lakes standard plastic frame with plastic foundation. (http://www.mannlakeltd.com/beekeeping-supplies/category/page19.html) The cell size on those are 4.95 mm. The rest of the frames in the honey boxes have a larger cell size. Some frames are started without a foundation. The intention is that the bees will build some drone comb there. He wants to flood the area with desired drones. But bees are also building fine worker brood in some of these frames, especially in the nucs.

 

Selling nucs, queens and honey

He split the nucs in the spring and sells one part with the queen, saves the rest to build up a new nuc. It’s usually used for a mating nuc or nuc production depending on the season.

Reid Brood One of the worker brood frames built by the bees without the help of a foundation.

He usually has a very good spring flow that will carry the colonies through the rest of the year, but there’s usually a dearth in the summer, which means the nucs may need to be fed sugar syrup to prepare for winter. 2015 he had so much spring honey production, he only had to feed about 20% of the nucs for winter.

He says that now he has enough resources so he can share honey between production hives and nucs. Thus he feeds less. He usually only feeds a handful of production hives (mostly new ones) to prepare for winter. The production colonies go through winter on large supplies of honey. Quite often he has extracted honey in April. You can say he uses his colonies as a honey storage.

 

Richard Reid’s locally adapted Varroa-resistant bee stock

• There are at least 3 km to apiaries with other bee colonies than of his stock.
• The area where he lives is not a highly developed agricultural area, so there is not so much agricultural chemicals there as can be the case in many other areas.
• He started with bees which had a degree of varroa resistance.
• In most brood combs, he uses small cell size.
• He doesn’t bring in colonies (such as packages) from outside the area with his bees.
• He splits nucs (with new queens from his breeder queens) to make more nucs, which later become production colonies or bees for sale. He also splits a few of the smaller, less productive, production colonies to create new nucs.

• He doesn’t requeen on a regular schedule. He has some colonies with queens finishing their 3rd and 4th season.
• The bad colonies die or have their queens replaced.
• He breeds after queens from many different lines each year.
• He tries each year just a few queens from other breeders.

 

Encouragement to all beekeepers

Richard Reid is one of several beekeepers who has managed to breed a varroa resistant locally adapted bee stock. Let us be encouraged by that and despite what some other beekeepers of all kinds say, that this is not possible. How can one be so ignorant to what others achieve? Make use of what you can of the experiences of Richard Reid.
When he started, he hadn’t many bee colonies, so even if you have few colonies you can do something.

Perhaps your circumstances are such that it is good to monitor mite levels in your colonies. There are various methods, for example the Bee Shaker (http://www.elgon.es/diary/?cat=85).

Don’t take it as a failure if you choose to use pesticides at times. Each of us decides what is appropriate for ourselves and our bees, in consultation with the laws of your country. A treatment that doesn’t involve any chemicals at all is to remove all capped brood (worker and drone brood) twice, a week apart. It is effective, weakens the bee population as well though, but not the health of the bees. The bad colonies get new queens as soon as possible.

Next season will always be better!

Treatment free feral bees

Up till now anyway, this colony of bees (and their ancestors forming this colony’s ancestor colonies) that has lived in a wall since several colony generations, has never been treated with any kind of chemicals ever, against Varroa mites or anything else.

June 29 last year I caught a swarm that came from this wall in a non-heated old house. (http://www.elgon.es/diary/?p=515) Towards the outside of the wall from the bees they had no insulation whatsoever. Just a thin board of wood. At the inside though a thick log wall.

For a couple of years there’s been an Elgon apiary 3 km away (2 miles). But the bee colony has been longer than that in the wall. Further back in time the closest apiary was 6 km (4 miles) away. At that time the Varroa mite had not arrived to these bees. For many years this colony has swarmed every year.

The swarm I caught was not big, but it had an egglaying queen and built up strength well enough to winter safely. To help it make a lot of brood I provided it with a shallow super above an excluder. I shouldn’t have done that I think as it was too easy for me to just take away this honey super when it was time to prepare the colony for winter. That is stressful time.

Now the bees hadn’t much honey left so I gave them 20 kg (44 pounds) of sugar in sucrose solution. If I hadn’t taken the small amount of honey it would have had about 10 kg (22 pounds) of honey for winter storage. Seeing how the colony behaved I think it would have made it well through winter with that amount. My first colony ever in 1974 had about that amount its first winter.

I saw no wingless bees during the season last year, so they got no Thymol against mites. I didn’t then have any quick way to measure the mite population (but here is at least one: http://www.elgon.es/diary/?p=354) And as I mentioned it was stressful times for me.

The queen stopped laying entirely in late summer. In November I saw through the plastic sheet used as kind of inner cover that the bees was sitting tight together like vacuum-packed peanuts.

FeralWIntered

About 10 March this year when the bees had their main cleansing flight after winter the cluster had spread out and filled more room than in November. It was very few dead bees on the bottom board. And not one defecate spot at the entrance.

These bees seems at least to be more winter hardy and be more Varroa resistant than common beekeepers’ bees, which have not been selected for Varroa resistance.

 

A possible scenario

A swarm of Elgon bees flying from the Elgon beekeeper 6 km away finds the cavity in the wall. Varroa mites havn’t arrived yet to the area. No beekeeper robs the honey or exchanges it for sugar. The cavity is not bigger than maximum two big boxes a beekeeper uses. The amount of brood can’t be as big as in a beekeepers hive. And the restricted area makes the volume finally too small for the bees (no beekeeper puts on boxes) and they swarm, every year mostly. Insulation is almost none. No beekeeper renews the wax and the bees build what they want when it comes to for example cell sizes. The Elgon beekeeper used small cell size to begin with. Here the cell sizes may become still smaller due to cocoon residues.

The bees adapt to the new environment now when they are on their own, like they were before there were any beekeepers around. In this adaption process the epigenetic process is most important, at least at first. The different environment created by a different “hive”, different food (more natural) and different cell sizes (also still smaller) gives a different chemical environment of many aspects. For example the different cell sizes give somewhat different food for the larvae, amount and probably composition also. This results in switching off some genes and turning on others in the DNA. Disturbing chemicals like pesticides and treatments in the hive can hinder this epigenetic process. But not for this swarm. It lived in a non-farming area and no beekeeper put chemicals in their hive.

There were no neighbor bees. Thus no bad influences from non-resistant bees drifting into their hive and no reinvasion of mites.

When the Varroa mites arrived the drones that became “fathers” were those that the mites didn’t parasitize. Maybe they avoided those drone larvae. And also those drones that were parasitized but were not as affected as others, became “fathers”. Thus also an adaption for resistance took place with a change of the DNA. Natural selection thus took place.

As the colony swarms every year there is a break in the brood production. This hinders the reproduction of mites. Also there is both an epigenetic and a genetic adaption with the new generation.

The smaller cells give less attractive food for the mites. They get less fertile on larvae in smaller cells. http://www.elgon.es/diary/?p=596

Drone cells get smaller in colonies on smaller worker brood cells. With smaller worker brood cells you get worker bees that get more hygienic. http://medycynawet.edu.pl/index.php/component/content/article/336-summary-201412/5234-summary-med-weter-70-12-774-776-2014 or http://alturl.com/a8scb Small cell beekeepers, including me, reports a widespread occurrence of uncapping and chewing out of capped brood in both worker and drone brood parasitized by mites. http://www.elgon.es/diary/?p=544 But VSH is said sometimes to not occur on drone brood. But those bees are kept on large cells. At least it doesn’t occur as much in drone brood. But it is observed quite a lot sometimes in small cell colonies as mites are observed to be much more common there in drone brood than in worker brood. http://resistantbees.com/blog/?page_id=2471

 

What happen with feral bees in a beekeeper’s hive?

If a swarm from feral bees end up in a beekeeper’s hive with large cell size, the environment changes and a “reverted” epigenetic process takes place. If there are more bee colonies in the apiary or close by all bees will be drifting (as is common) in all colonies and be mixed more or less. If these other bees have no or very little resistance against Varroa they will have a negative impact on the more resistant feral bees. These were enough resistant in the wall. Are they enough resistant now in this beekeeper’s hive? Maybe not.

If the feral swarm ends up in a beekeeper’s hive with small cell size, and there are neighboring bees that have substantial resistance against the mite, it may be that this swarm will do very well fighting the mites. Especially if there are no or very few bees around that can’t make life miserable for Varroa mites.

What will happen with my feral bees? Will they continue to be treatment free?

Neonics and success

Bees visit corn for pollen, period. Bees visit canola for pollen. Bees visit potatoes for pollen (Danish tests). Bees visit a lot of flowers for pollen. Bees get what the pollen is enriched with. Neonics are not good for bees.

But honeybees have a very sofisticated way of living and can handle a lot of difficulties – if they’re not too many. One reason for that is the many individuals, in both adult and brood stages. They can sacrifice some brood for example when fighting varroa. If field bees die during duty due to plant protection spray, if it’s not too much, there are usually enough many new field bees replacing them. Solitary bees though may have a more difficult situation…

Why did this feral colony survive on neonic corn? http://www.elgon.es/diary/?p=181

  • No or very little reinvasion of varroa mites – it was the only colony in the apiary and far to other bees.
  • No one robbed its honey and gave low value kind of sugar.
  • There was a variety of food sources which the bees could reach easily, at the end of fields giving pollen without neonics.
  • The bees built there own cellsizes and a good portion for brood was enough small in their situation, some of it smaller than 5.1 mm.
  • No one moved the bees around to different places.
  • No one put miticides or antibiotics in the bee colony weakening the bees’ own defense system.
  • The bees probably swarmed every or every second year, once or more, giving a break in rearing brood in the brood season, when they cleaned their nest from pests and parasites.

In this situation bees adapted epigentically and genitically and learned how to fight the varroa mite. They survived during this process because there was no reinvasion of mites. The mite population established on a durable level where viruses levels were not high. Thus there was no big help for nosema to thrive. And as the virus levels were low neonics didn’t increase the effects of the viruses that very much.

This colony then under these circumstances were Varroa resistant and could pollinate plants around it that needed pollination. The solitary bees in the area that didn’t live entirely on neonic treated plants survivied too and could pollinate plants, for the benefit of farmers and biological diversity.

So, the message to everyone involved, also chemical companies:

Focus on:

  1. Develope Varroa resistant bees and a plan to spread them among beekeepers.
  2. Make sure there will be enough neonic free pollen sources and nest places for solitary bees close to farm fields, ”wild plant areas”. This will ensure and increase success, crop and money for everyone.

 

Swarm from a tree

Vildbiträd2

Last year my friend had a call in July about a swarm that had come from a big old tree. The cavity couldn’t bee very big. And the swarm was not big. http://www.elgon.es/diary/?p=235

But the bees in the tree survived the winter and was thriving this year too.

The swarm was last year strengthened with a couple of brood frames from his other colonies. It was not treated against varroa last year. It survived winter well. This year it was used as his other colonies to produce splits for sale. A couple of weeks ago he was too curious about the amount of mites in the colony so he gave it 15 grams of thymol and collected the downfall. After a week 150 mites. Under the circumstamces it’s not much at all. The bees must have some kind of trait that keeps down the number. He has had thousands of mites falling in a few odd colonies in earlier years with such a treatment – as comparison. Normally he just give his colonies 15 grams of thymol, but in the middle of August. As the only treatment in a year. He has Elgon bees and uses 4.9 mm cellsize. His winterlosses is always below 5%.

Next year he plans to breed from this colony as it is a very nice one.

The queen of the wall

Five days after I hived the swarm from the wall I checked it. I placed it about three km from the wall where it originated, to help form the ”stock of the region”. It wasn’t a very big swarm, but it will make it well for winter.

Swarm queenSwarm drone

It had placed itself on the foundations I had supplied them with and drawn quite some combs, partially filld them with honey and the queen had layed eggs in four or five shallows. A big queen, small drone and quite small workers.

Swarm house The bees have occupied the upper right corner and round the corner on the other side. There the original entrance was.

The wall colony is living in one of the upper corners of the house, for more than 10 years. Now the nearest other bees are 3 km away. 10 years ago 6-7 km.

Swarm propolis The entrance just below the window to the left. Below the bees have sealed cracks with propolis.

 

Three years ago the owners tried to tighten up the entrance between a couple of boards in the oyter wall of the house. After some time the bees had made a new entrance around the corner. Some cracks in the wall the bees have sealed with propolis.

Swarm entrance The bees are entering in the upper part of the opening and leaving at the bottom of it.

The bees enter the upper part of the entrance and leave from the lower part.

Feral swarm

Tonight at half past nine after a telephone call, I took a swarm in a raspberry bush which came from bee colony in a wall in an old house 20 meters away. The house is situated ”in the middle of the forest” in a small village, which 100 years ago was a thriving small industrial environment. For at least 10 years there had been bees in the wall in the old building that had housed four families working in the small industry. The house would be perfect for Bed and Breakfast. And probably it will end up as such.

– This was the most exciting moment in my life said the woman that had made the call, when I went away with the swarm in a box to the car. I promised her a bottle of honey.

The bees in the wall have swarmed almost every year. They are very small and easy to handle. Quite light colored. But thorax was remarkably black, on the worker bees, black hair instead of light brown. The drones were quite dark.

7 km (4.5 miles) away a niece of mine (Rebecka’s mother Regina) have had bees for more than 10 years so the original swarm in the wall may well have come from her bees. More recently there have been established a couple of apiaries about 3 km (2 miles) in another direction, with my type of bees, Elgon bees.

– What should I do with the bees in the wall, the woman asked.

– Let them live their life there, if they don’t bother you, I answered. They pollinate fruit and berries and flowers, being a source for biological diversity. The break in brood due to swarming will help keep them healthy.