Anecdotal science

The expression ”anecdotal science” may well be a contradiction, as an anecdote can be far from scientific. When we are discussing bees, varroa, varroa resistance, bees behavior and similar things it may be a good thing to think about how we argue, the quality of evidences for different things, how we draw conclusions and what truth is. This is an extensive area for discussion. But I will here restrict myself to discuss little about the difference between anecdotes and science.

If someone has another opoinion than you he may try to dismiss what you say by calling it an anecdote. By that he gives the impression that reports can be either anecdotal or scientific, as if there are just two distinct divisions of accounts, either it is anecdotal and thus not of any real value when drawing correct conclusions. Or it’s scientific and a good help in knowing the truth.

Reality isn’t that simple. There aren’t just two different options when characterizing an account, an anecdotal or a scientific report.

Anecdote

An anecdote is a brief, revealing account of an individual person or an incident. It is used to illustrate a point the author want to make.

Evidence

Evidence is anything presented in support of an assertion. The strongest type of evidence is that which provides direct proof of the truth of an assertion.

Scientific evidence

Scientific evidence consists of observations and experimental results that serve to support, refute, or modify a scientific hyphothesis or theory, proposed explanations for a phenomenon.

Prediction and falsifiability

The best hypotheses lead to predictions that can be tested. The strongest tests of hypotheses come from carefully controlled and replicated experiments that gather empirical data. A scientific hypothesis must be falsifiable, implying that it is possible to identify a possible outcome of an experiment that conflicts with predictions deduced from the hypothesis; otherwise, the hypothesis cannot be meaningfully tested.

Reproducibility

Reproducibility is one of the main principles in science. It is the ability of an entire experiment or study to be dublicted, either by the same researcher or by someone else working independently.

Statistics

Often today when you are producing papers of tests, statistics play an important role when presenting results. If you get what is called a statistical significance you are said to have a result that can be trusted when used to draw conclusions. It is a difficult field and discussed in different ways.

The value of a report

There’s not just two options, anecdote and scientific report. There’s a whole range of different characteristics of a report qualifying it to be placed somewhere in between the two ”extremes”. Even these two can be difficult to clearly define.

Example

An anecdote far away from being scientific could be what often is called a testimony, a story of an event, and in this case a conclusion: ”I have a bee colony that is very aggressive. It produced double the amount of honey compared to my other colony. Aggressive colonies are more productive than calm colonies.”

Then you have a scientist that got inspired by this anecdote and formed a hypothesis of the last sentence in the anecdote above: ”Aggressive colonies are more productive than non-aggressive colonies.”

The first important issue is to define ”aggressive”. But let’s say he used a definition that everyone can recognize to be true. The next problem is to decide how many colonies to be used in the test, and the heritage of the queens in the colonies (should they be sisters for example). About half of the colonies should be aggressive and the rest non-aggressive. The colonies should be of the same strength (from when) and have the same health statues. The worker bees should be very much dominated by the queens offspring (when should the queen have been introduced).

These things I mention here are taken in consideration to avoid error sourcesto be able get a correct result. There are surely more error sources to avoid.

In the ideal situation there will be enough obtained data to produce a statistical result that falsify or supports the hypothesis. If it supports the hypothesis you can draw the conclusion that according to the knowledge we have today the most probable conclusion that comes closest to truth is that the hypothesis is true. But the result does not exclude the possibility that future result will anyway falsify the hypothesis. New knowledge may enlighten how to better design a test and avoid an error source not previously known, for example. That’s science. It always leave open for new knowledge to change the conclusions made today, in a minor or major way.

If no statistical significance has been obtained the results may anyway be pointing in a certain direction and a conclusion may be that the hypothesis is correct but more research is needed, probably with better designed tests.