Cooperation in the Elgon area

Some years ago, varroa resistance had risen noticeably on my Elgon bees. Then I started to give away some breeder queens to the neighboring beekeepers. And they promised to graft from them to make new queens. In particular, Stig-Åke Gerdvall (board member of our association) and Peter Tesell (chairman). Radim Gavlovsky, who I began to cooperate with in queen breeding , took as many queen pupae and laying queens as he needed. This had of course also to fit into queen production for my own part and for the customers. The neighboring beekeepers in the local association already had Elgon bees, but now they were able to take part of the breeding successes faster and thus help to spread better drones in a more massive way in the area.  (Click on the pictures to make them bigger, then click on the back arrow in the browser to get back to the text again.)

Share it – it will contribute back

I had tried a similar strategy earlier and it worked. Then, queens were tried in varroa infested areas, before the Varroa arrived in my area. And I could bring back valuable breeding material in the form of pieces of combs with young larvae to graft from.

Less reinvasion – reduced varroa pressure

Obviously, good bee colonies in the Elgon are many enough and have now helped each other to keep down the Varroa pressure in the surroundings. Individual colonies with maybe too many mites have not been able to start strong domino effects by contributing too much of reinvasion of mites. Reinvasion brought about by more resistant colonies who silently rob those being richer in Varroa mites.

 (Photo: R Oliver)

Bee shaker test (alcohol test)

A couple of years ago, we also began to be more careful making bee shaker test and treat as soon as varroa levels were higher than 9 mites from 1 dl of bees, at least (about) 300 bees. Checked at least spring and summer.

The Elgon area

This has resulted in a very nice result. An area (about 15 x 10 km) in the center of the entire elgon area (about 50 x 10 km) which contains about 350 elgon colonies (in the center area) of good quality, and no other types of bees. Here, most of our queens are mated. Only about 50 of these colonies needed to be treated against varroa this year. There are probably more than 900 elgon colonies in the entire elgon area. Most of them has Thomas Dahl with 300. Johan Ingjald is increasing his numbers. There are several engaged new beekeepers going up in numbers.

Courses and support

Stig-Åke Gerdvall and Johan Ingjald (TBH-expert) hold beginners courses and queen breeding courses in our local association. They help the participants to get new good colonies, and to help them find good places to mate their new virgin queens. We have also organized a mating site for mini nucs which Peter Tesell manage.

Good figures

The annual losses are about 10% in the area. The harvests are good, and of course, vary with the availability of nectar in the various parts of the area. To the east, it is a problem to produce low crops due to the rich soils.

 

Regular meetings

We usually meet in Nov-Dec every year and talk about the season and planning the next. This year we are so many so we gather in a bigger locality in Hallsberg. Anyone interested is welcome. Four lecturers. Lessons from feral bees – R Gavlovsky, Knowledge from TBH and Warré – J Ingjald, Possibilities of the Beescanning app – B Lagerman, Tips for breeding resistant stock – E Österlund.  Cooperation works well!

 

Resistance traits – VSH, VSHD, Grooming and more

Sometimes, the term VSH is used as meaning the same thing as varroa resistance. I think it’s helpful to clarify what VSH is. It is one of several resistance characteristics that affect the bees’ resistance to the Varroa mite.

VSH is not the same as uncapping capped brood cells with varroa inside and remove the pupae. It is one of a few different varieties of cleaning varroa invaded brood cells.

– VSH is opening (+ possible recapping, and / or + possible removing the pupae) of capped workerbee brood cells (not dronebrood cells) in which one or more varroa mites have entered AND the presence of offspring (children) to this (these) varroa mite(s) in these cells.

 VSH

As we see from the description here there could be different varieties of this trait. It isn’t needed that the bees remove the pupa for this behavior to de called VSH. It is enough that they uncap pupae with invaded mites with offspring. The bees may well recap it again. Uncapping is enough to disturb the reproduction of the mite. Is this difference in behaviour (recapping the cell and not removing the pupa) due to genetic difference?

– Uncapping and cleaning of capped workersbrood cells with varroa which have no descendants is not VSH.

– Uncapping and cleaning of dronebrood with varroa is not VSH. (But this is though also a valuable feature.)

– Other properties like grooming (removal and biting of mites from the body of other bees or themselves is an important feature, especially if the colony is reinvaded by mites.

– Resistance to viruses, for example in the form of good production of suitable peptides (short amino acid strings) which “eat” viruses is important.

– Reduced inclination for robbery is not VSH, but is a good feature, as it means less risk for reinvading/reinvasion of mites from bee colonies with increased varroa level and as a consequence thereof a reduced defense against robbery.

– Good defense at the entrance not letting foreign bees enter the hive prevents bees with mites on them from other colonies to raise the varroa level..

– Bees that return to their own hive and not to the neighbor’s (drifting) is an important feature to prevent the spread of mites within the apiary.

– Forcing virus infected bees to leave the hive is one way for the hive to get rid of viruses, it’s not VSH, still very good. The house cleaning bees treat virus infects bees like trash, bees with damaged wings (DWV) or worker bees hatched too early (grey bees crawling around, APV-types).

– There are I’m sure more traits that are important for resistance.

 

VSH is a good feature!

VSH can sometimes be confused with less good development for a bee colony. This depends most often on a queen not laying eggs very well. But if a VSH colony is getting a lot of mites through reinvasion from colonies with high varroa levels in the neighborhood (within a distance of 2 km/1.5 miles) the result may be a lot of shotgun pattern brood combs due to a lot of uncapped and cleaned brood cells to get rid of mites. The consequence will be a slower development of the colony. But as mentioned above a true VSH trait give room for the variety that the pupae are not removed but they are recapped after uncapping. And this can happen more than once. In such a case the consequence needn’t be slow development of the colony even if the varroa level temporarily is a bit high.

This is a good example of VSHD. You see clearly that pupae in drone brood are removed as brown cocoon residues are left. This is the first round with brood. Also we see uncapped drone pupae with purple eyes, and some cells with uncapping having started with holes in the capping. Click on the pictures to make it bigger

 

 More acronyms

Perhaps it’s good if more short names, such as acronyms as VSH, become common, names for different characteristics of resistance.

– With regard to the concept of Grooming, This term is well established. Bees have mites on their body and these are removed by other bees or themselves. We need no other term here.

– As far as VSH on drone is concerned, it is quite newly discovered and no special acronym is used as far as I know. VSHD = Varroa Sensitive Hygiene Drones.

That’s an important feature, maybe more important than VSH. The acronym VSHD could work well.

The mites are more attracted to dronebrood than to workerbrood. If a colony has 5-10% dronebrood in the brood area, as is often found in feral colonies (at least) and bees have a strong VSHD, the bee colony will not lose so many worker pupea (future valuable worker bees). Many mites will invade drone brood and will be cleaned out from this drone brood.

The Norwegian Hans-Otto Johnsen has shown (he is conducting such surveys and there is some notes about this in Norwegian bee magazine Birøkteren and on this blog) that bees more easily identifie mites in smaller dronebrood cells (6.2 mm) than in larger (7.2 mm), and clean out them from mites and pupae. Bees make smaller dronebrood cells naturally, the smaller the cell size is for workerbee cells. This is probably an important characteristic that small cell size provide. The drone cellsize is naturally 6.2-6.4 mm when the bees live on 4.9 mm worker bee cells.

These acronyms may work

ED  for entrance defense.

LR  for low robbery.

LD  low drifting.

VP  for virus peptides.

VB  for trashing virus infected bees

– If you have suggestions or comments don’t hesitate to share them, for example concerning more resistant traits. Maybe you have ideas how to measure resistance traits? Maybe the best selective tool is just measuring the varroa level a few times a year?

Wingless bees and varroa level

Before varroan came there could be seen occasional bees with undeveloped/deformed wings in spring. Maybe it was the influence of DWV, Deformed Wing Virus. But it may also have been chilled brood. During the final phase of the pupa development to finished bee the wings are formed. Cold nights and too much of brood could maybe have caused undeveloped wings.

Today, one can probably assume that when you see a wingless bee, it’s DWV responsible. Varroa mites are paving the way for many viruses into pupae and adult bees that had not previously bothered bees. Moreover, these viruses multiply in mites. So today mites spread viruses more efficiently than when the mite had just arrived in Europe. Why that is so is another interesting discussion that probably involves the use of miticides.

 

The Bee Shaker

The Bee Shaker is a great way to keep track of the level of mites in the bee colony, especially in spring and late summer, so the amount of virus can be kept reasonably low by allowing people to fight the mite if it exceeds a certain degree of infestation. (If that is the strategy chosen.) A good benchmark that many use today is 3%, three mites on one hundred bees (9 mites in 300 bees/1 deciliter of bees).

It also means that to develop a bee stock towards better varroa resistance, you don’t treat against the mite, especially below a mite level of 3%, whenever in the season it is measured.

But if there are wingless bees in the bee colony? It’s usually a sign of DWV and thus too many mites. Here is the Bee Shaker again a good tool, to find out if there really is a high degree of infestation of mites when you see a wingless bee. If you decide to treat against mites if the level is high you might do it to prevent the spread of mites to other colonies nearby.

 

A colony with a wingless bee

Last year’s breeder queens seem to have produced many queens that have given colonies that control the mites quite well. One of these daughter queens was introduced to a colony that had problems with mites. Perhaps the biggest problem was virus.

This colony was quite weak in this spring and developed slowly, compared to the other colonies in the apiary. I concluded that I would have to check the brood nest to find out the cause. Maybe the colony was shifting their queen?

On a later visit to the apiary about June 20, I saw one, only one, wingless live bee on the hard board in front of the entrance. I then looked in the brood nest, but saw no more wingless bees on the brood frames. But the brood frames had a so called shot gun pattern with a lot of “holes” where you would have expected capped brood as the other cells on the comb contained capped brood. Many pupae seemed to have been removed by the bees. Most likely not due to inbreeding as the queen had mated in the apiary and the number Elgon colonies in the neighborhood was quite high. No trace of any brood disease could be seen so I concluded that a likely cause could be cleaning out of varroa-infested brood. Or could the bees detect virus in the pupae and remove it, without there being a mite in the cell, and remove the pupae?

Could that be the reason why the colony developed so slowly – that the bees were throwing out mites? How had they managed? The wingless bee could indicate that they had not done so well and that the amount of mites was big. Now it was time for a Bee Shaker test to find out the level of Varroa infestation. (Here you can read more about The Bee Shaker, its uses and possibilities: http://www.elgon.es/diary/?p=809)

Here you can see a video clip when doing this test (sorry I’m talking my mother tounge Swedish):

The sample showed zero (0) mites! Then it’s no use to treat, There were far too few mites in the colony. Why had there been a wingless bee recently before the test?

VarroaVirus The brood frames looked less spotty and the colony stronger.

July 8 I was visiting the apiary again. Once again I saw a wingless bee on the hardboard. But now I knew the Varroa level was low. Still no use treating. I looked in the brood nest. The colony was a little stronger still and the brood frames had fewer “holes”. The bees look healthy. They were recovering.

Virus apparently remain in the colony for a while after mites are eradicated – by the beekeeper or the bees.

The bee shaker and varroa resistance

Skak botten 2lc One mite from 300 bees.

I understand that sometimes it’s a good idea to get an idea of the infestation level of varroa mites in bee colonies. You can take samples from a couple of colonies in an apiary to get an idea when to treat. But my first concern is breeding varroa resistant bees.

I have never monitored the varroa infestation level in my colonies. I haven’t had time and I haven’t found any reason for it because I thought I had found a good compromise – treating with Thymol when I saw wingless bees on the hardboard in front of the hive entrance, checking every 10 days or so.

 

Good results up till now

I give a colony one or two pieces of dish wash cloth containing 5 grams of Thymol each when I see wingless bees crawling on the hard board in front of the hive. But this means I don’t treat every colony at the same time (hopefully some not at all in a season). This results in some colonies with higher mite loads not showing wingless bees yet. So these colony (-ies) will through reinvasion increase mite levels again quite quickly in those colonies recently treated.

But this way I’ve been able to develop more and more resistant bees and still produce a good crop. There have been a number of bees not producing any honey. Winter losses have been reduced from 30 % to 10-15 % (except the first year with varroa trouble when I lost 50 %).

The bees have been better chasing mites and remove infested brood. I’ve got good reports from for example Poland and Germany of low populations of varroa in colonies headed by Elgon queens, compared to other bees. And the VSH trait is becoming better and better. Daughters of my colony with the highest VSH % (80) gave colonies that in Poland dropped 2-5 mites after effective treatment while other colonies dropped more than 1000.

 

Thymol is useful but hinders total adaptation

I now have been aware that by having this regime I have a constant quite high varroa population in the apiaries as a whole, and thus probably a climbing virus pressure. In a way this is good as selection is done also on virus resistance.

How do I know that? Now when I’ve used the bee shaker somewhat this year I’ve seen that colonies may show wingless bees (DWV-virus) at low mite infestation. Such low infestation you didn’t expect them to do so, sometimes even as low as 2 % infestation (a daughter from a colony with high VSH trait [80%]! This experience and others similar, raise the question if very high VSH comes with higher susceptibility to viruses.). Wingless bees at 2 % infestation is totally different from a report I’ve got from a test further down in Europe. (There they normally treat effectively every year.) In that test where they didn’t treat at all, my bees didn’t show any wingless bees at 35% infestation while other bees had a lot.

 

How to explain the high infestation level in the test

Now I have to try to explain why my good bees could arrive at 35 % mite infestation. This is interesting and brings up another topic as well. The importance of memories of the worker bees (their knowledge how to chase mites), not only their genetics (and epigenetic history). My queens in this test down in Europe were introduced to bees that had not been selected the same way as mine, and those bees had been treated effectively every year. The bees could probably not chase mites as well as mine.

But of course the genetics from my queens would more and more influence the workers to build up a better behavior when it comes to chasing mites. When the bees have arrived at a good mite chasing mood they learn new bees born in the colony what they have achieved, more than what just come directly with the genetics. In Norway with Terje Reinertsen and Hans-Otto Johnsen experiences are achieved pointing strongly to this.

In an apiary where many colonies are non-resistant as in this European test, you get a mixture of all bees in the apiary through drifting and robbing. This is taking place more and more when the mite populations in the colonies rise. As it did in this test as the colonies were not treated at all.

In a situation when colonies are receiving a lot of mites from neighboring colonies, even the very best kind of mite chasing behavior is maybe not enough to keep mite levels low.

In the test apiary previous to this test, effective treating every year had kept the mite and virus levels low, so the mite population could grow much in the test without showing wingless bees – like in the beginning when the mite first arrives to an area. Then the virus levels are usually very low and there could be 10 000 mites and more in a colony without any signs of viruses (documented case in Sweden in 1987 when the mites were first detected on the island Gotland in the Baltic).

The bees in this test were on 5.5 mm cell size, while my bees are kept on 4.9 mm.

 

Also Thymol hinders total adaptation

I have talked to some beekeepers whose bees are totally treatment free since many years (Hans-Otto Johnsen in Norway, Richard Reid in Virginia and Myron Kropf in Arkansas). Their bees have now small populations of mites and are showing no wingless bees.

I have come to realize that also Thymol is a chemical that hinders the bees to fully adapt to handling the mites successfully on their own. It is in first place the epigenetic adaptation I have come to think of that is disturbed when alien chemicals (like miticides of all kinds) are present. Epigenetic changes take place when a chemical change occur due to environmental changes, like for example the presence of the mite. (But it should be said also that if you use Thymol regularly spring and late summer in a system not selecting better bees like I do, winter losses can be kept low. I know because beekeeper friends do like this.) Also Thymol like other miticides is lowering the immune system of the bees.

How do I then integrate these insights to go further in becoming totally treatment free?

 

A new strategy to try

I’m planning a new strategy, at least to start with in one quite isolated apiary. I have to stop using Thymol. First though I think I have to knock down the mites effectively to reduce the virus level. And then get a better control of the number of mites and take action without any chemicals if varroa populations are rising too much in colonies.

 

The role of the bee shaker

Here the bee shaker will play a role. And I have looked more into how Randy Oliver uses it. It’s much easier to shake a frame of bees into a bowl or pan and then with a measuring cup scope somewhat more than a deciliter (3.5 oz) of bees and pour them into one half of the bee shaker, half filled with alcohol (for example methylated spirit or rubbing[isopropyl] alcohol). Then screw it together and shake for a minute before reading the result. Compared to holding the bee shaker close to a frame side with bees and pour bees into it moving it slowly upwards, the alternative of Randy Oliver is quicker (at least for me). The next step is to test the VSH trait in the best colonies.

Skak yngelrum Start checking from one side in the uppermost box with brood. The queen hopefully will run to the brood if she is outside the brood area (probably not). The comb closest to brood you check so the queen is not there. 

Skak deciliter Shake the bees into a pan or bowl. Scope up somewhat more than a deciliter of bees (3.5 oz)

Skakburk sprit Pour the bees into one of the halfs of the bee shaker, which is half filled with alcohol. Screw the other half tight on top. Shake it for a minute.

Skak botten1lc Turn the shaker upside down and continue shaking until all the alcohol has poured down. Lift it up against the sky and count the mites. This colony had 14 mites on 300 mites and it got two pieces with 5 gram Thymol each. It showed no wingless bees.

What I hated to do

So what I’ve done so far is something I hated to do. In one quite isolated apiary I used an effective chemical miticide (only this time I promised myself) in August 2015. I wanted to use something else than Thymol to give the bees a break from that chemical. And I wanted to knock down the mite population effectively to lower the virus pressure in the apiary. I collected the knocked down mites. (In the rest of the apiaries I plan at the moment to continue as before.) The colonies that had needed most Thymol earlier in the season had the highest downfall of mites. They got probably continuously reinfested from other colonies that happened to not show wingless bees while they anyway had quite high mite loads. The defense system of these quickly reinfested colonies was probably lowered by Thymol, which made this relatively quick reinfestation possible.

One colony that hadn’t needed any Thymol at all (and very little the year before) and still had given me 80 kg (175 lb) of honey with 20 kg (45 lb) left for winter dropped less than 200 mites. And this happened in this very bad season of 2015. This colony is of course a breeder for the coming season.

 

The new strategy

Next year I will in this new strategy apiary make splits from the best colonies and place them in the same apiary (or if the number is enough there, place in other apiaries). In the least good colonies in this apiary (those with highest infestation level) I will kill the queen and give them a ripe queen cell bred from a good colony in this apiary. I check the number of varroa (infestation level) with the bee shaker twice a season in all colonies in this apiary. Each time it will take about 5 minutes per colony. And I look for eventual wingless bees on the hard board in front of the entrances. Before the number of mites rise too high (whatever that is), or when I see wingless bees, I plan to remove all capped brood (worker and drone brood) once or twice with a week in between. I haven’t decided what to do with those brood frames yet. Any suggestion?

 

 

Changing plans

I make notes. I’m sure you do to. How much is a good question. I made more notes as a beginner and quite some years after that. When I got well above hundred hives I began to question each kind of note and how much I could benefit from it. I wanted to save time, if I found it possible to skip doing some kind of notes.

For each year I use a fork binder. First I have a graph paper. On a horizontal line high up all the apiaries are numbered. On a vertical line to the left I make a note of the date, then an X for the apiary I have gone through that day. That’s the most important note, to be sure I don’t forget any apiary and to make sure it doesn’t take too long between my visits.

Fork Binder A spread in my fork binder.

I have made a map in the computer in the Excel application showing each apiary. On the spread is the map to the left. On the opposite side a blank graph paper for making notes. In the very early season (still winter/spring) I make note of the colony strength, how many “comb gaps” the bees occupy. Then of the progress of the colony (putting on boxes). At the end of the season, very late autumn/winter, again how many comb gaps the bees occupy.

I only make a thorough check of a colony if it doesn’t develop as expected. I check for eventual disease, if it has brood (thus a laying queen), and eventual other things to observe. I make notes only of things that depart from the average or the normal. No notes for a colony indicates an average or a normally functioning colony. Also notes are made concerning hot temper, no brood, wingless bees. I make notes of how much thymol in grams a colony get and what date, estimated amount of honey taken in kilograms (it doesn’t matter if I do a wrong estimation with 10-20%, the estimation is for comparison between the colonies).

When the season is over I compile the notes and do stats. Then I make a first probable selection concerning next year’s breeders and which queens I will shift next year. The final selections are made during May and June the coming season. Here the notes are invaluable as I tend to forget some colonies that I discover again when I’ve done the stats.

Before May comes there’s often a hard winter ahead, and a tough spring. And the spring this year was really tough, which changed the preliminary plans a lot. But the winter had been mild.

The spring was very rainy and very chilly. May was the coldest since 1962 in Sweden. The bees had small opportunities to get enough of fresh pollen for their usually quick buildup. And proteins they need desperately for everything for their rapidly expanding colony to function properly.

My bees have a higher varroa pressure than most others maybe, to let the least good colonies reveal themselves. Due to the season the immune system (rather defense system as their defense against diseases are different compared to mammals) among other things didn’t work fully due to lack of proteins. Viruses showed up even if the varroa population wasn’t big.

Maybe I should have stayed cool and not used varroa treatment, I don’t know. Varroa treatment affect the bees negatively as well, but of course not as much as mites. When should I stop treating altogether? And how should I do it? Just stop at any moment or do it in a certain way? I don’t know.

I have used more thymol this season than last. The colonies with high VSH value (VSH 80% the best one, included) and their daughters, most of them, showed wingless bees and many dwindled. I was surprised and disappointed. How was this possible? Can high VSH-value mean less good other traits than VSH? Sometimes such phenomena can appear with strong selection for strengthening a trait, as such selection often is made with the help of inbreeding.

Anyway, when I should decide which queens to breed from I went through the notes and found some interesting colonies I hadn’t payed enough attention to. Those colonies hadn’t needed any treatment for two years. So I made a VSH test. The S241 colony had three mites of 103 pupae checked. Two of the mites had no offspring. The third had one white daughter mite and no male. The H101 had one mite of 110 pupae checked, with no offspring. The neighbor colonies of these two colonies had wingless bees and many were dwindling. Of course I bred from these two good colonies.

Quite soon afterwards the H101 showed a wingless bee. I had split that colony and put the big split with the queen in the same apiary as the “mother” colony. The split with the queen lost most of its field bees that way. Was that a cause?

The S241-split was moved to the home apiary and kept its field bees. The split grew fine and is now a big colony. All the daughters are doing fine and building fine colonies. Both S241 and H101 are colonies that have shifted their queens themselves, whatever impact that may have.

To sum it up. I had to change my breeding plans quite a bit for this year, after this unusually cold and rainy spring. But I think it’s important to make good notes and from them plan for next season. Then when next season comes you know what to change and how.

The VSH 80%-colony was a disappointment and I don’t understand that, yet. There are though a couple of daughters from it that are very interesting. Those havn’t needed any treatment and didn’t show any wingless bees. One has shifted it’s queen. The second are showing a lot of bald brood and spotty brood (cleaned out brood with mites?). The queen is laying well. It seems it’s fighting reinvasion of mites and doing it well. So good that the colony hasn’t grown and hasn’t given any honey.

Bald brood One of the daughter colonies to the VSH 80-colony is fighting hard against the mites and havn’t shown any wingless bees, not yet anyway. Maybe a breeder next year.

This season is a disaster. The month of July has been the rainiest I have experienced ever. The honey crop is in average maybe 5-10 kg per hive (including winter losses and failing colonies) to compare with 25-35 kg for several years. And many colonies may need a good sugar feed to survive the coming winter.

But, the season isn’t completely over yet…

 

 

My selection parameters

I have prepared for and selected for varroaresistance for quite some years. Last year I learned how to test a colony for VSH, a simplified method described by John Harbo, easy for everyone to use.

 DWV-bees on the hardboard

Before that I just allowed a mite pressure in the colonies until they showed virus problems. That meant in practice appearance of wingless bees, DWV-bees, either on the comb, but still easier, on a hardboard in front of the entrance. (Bees with very little resistance are though not quick in throwing out of the hive DWV-bees, or other virus-troubled bees.) You have to visit the apiary every 10 days or so, but a quick look will tell you, plus a look in the hive after opening the inner cover to check how the colony develops. No need to check down in broodnest unless you register something seems to be wrong.

Breeder candidates

Those colonies that keep going and develop normally without any symptoms, during which time no treatment has been done, they are of course then candidates for being breeders, especially coming spring.

 First breeder

In autumn 2011 I had three colonies that had been big colonies (not newly started splits during that year) without treatment for the whole season with no signs of varroa or virus. The winter and coming spring would tell which one, if any, or all, would be able to be used as breeder in 2012. That happened to be only one, H157.

Good to remember is that varroa first began to be a problem in 2008 with first bad winter in 2008-09 and 50% losses. Next winters no such losses.

Next years 5 breeders with VSH as most important

In autumn 2012 I had 11 breeder candidates. In spring 2013 I had at least 5 I judged I could breed from, but that year focused most on VSH. I had just learned to know I could.

I learned about VSH testing that spring in 2013 and did VSH-testing on three colonies.

 S120

One was a swarm that looked promising and nice. The mother colony was a feral colony in the wall of the dogtraining center, well within the area of my type of bees. The swarm showed 50 % VSH, half of the pupae with mites had mites without offspring. So even if this colony hadn’t been going for a whole season plus another winter without treatment I used it as a breeder in 2013.  I named it S120.

 K25

The second I VSH-tested colony had been a very small the year before and not really a production colony then. But it was in an environment with big colonies which needed thymol so I decided to test it and it showed 40 % VSH (4 pupae with mites had no mite offspring of the 10 pupae with mites found).  K25 it was named. But it was quite aggressive. I decided though that varroa resistance in this stage was more valuable.

 R137

The third VSH-tested colony was a walk away-split from a colony that hadn’t been treated for two years. It wintered with such a tiny cluster and still developed so promising and had such a good pedigree background I choose to VSH test it. Well, it wasn’t possible to get any VSH value as it hadn’t any mites in the brood. I was so amazed I decided to breed from it. And I named it R137, as I decided it was resistant, instead of H137.  It must have had a good resistance behavior, but resistance is complicated…

H109

The mother of R137, H109, of course also was used as a breeder due to its history, but she was old and layed 50 % drones in worker cells. Couldn’t really make any VSH test I decided. I grafted one time and killed her.

 M176

The fifth I used showed itself to be very old as well and fell off the comb and died just after taking her home in a small split. No VSH-test. That colony I had thought had a new queen that had past the test. But this colony with this the old queen, though good, had been treated every second year with 10 grams of thymol (very little actually relatively) during four years. M176.

Some observations

Why do I tell you all these details? To come to the point for my situation, soon, be patient.

Late in season 2013, S120 showed a couple of wingless bees and got 10 grams of thymol. K25 which really hadn’t had a real production season before it was choosen swarmed thee times in July in 2013! I have never experienced that before, ever. R137 has some peculiar traits. It supercedes its queen every year it seems. And some daughters do too. This year a few wingless bees were seen and it got 10 grams of thymol.

I never do regular swarm controls in my colonies. Usually about 5 % of my colonies swarm. This year many daughters from two breeders from last year 2013 swarmed, from S120 and K25. And almost all daughters from these breeders needed thymol. Some of the daughters of K25 were very aggressive. Remember all queens are mated naturally in the apiaries. The apiaries together form an area with only my type of bees.

Breeder candidates for 2015

BUT maybe it was worth it using the breeders that disappointed me. I must have genetic diversity in my stock. I can’t make queens from just one line (H157).

I have one daughter of S120 and one of K25 that are really outstanding in resistance, honeycrop (more than 150 kg (300 pounds)), very good temper and no swarming tendency. H109 has more than one good daughter. M176 as well. And then there are walk away splits with heritage from the first breeder chosen for resistance H157, which are breeder candidates for 2015. Maybe I will use as well the three breeder used this year, or two of them.

Breeders used 2014

The autumn of 2013 I had 36 breeder candidates. I could have bred from more, but I choose to breed from three this year 2014, of which two are sisters, daughters of H157. These are H112 and H105. H157 had quite some daughters worthy of breeding from.  The third breeder this year was L242. After using these three, in the middle of July I made the VSH test on them. In all three the infestation rate in the brood was about 5 %. H112 had a VSH value of 80 %. H105 – 67 % and L242 had 33 %. No treatment was needed for this year either for H112 and H105. L242 got 10 gram thymol late in season. L242 came from a quite isolated apiary with small reinvasion and was moved to my home apiary and probably got more reinvasion here. But all three are wintered very strong.

Maybe I will use H112 and H105 in 2015 as well, we’ll see.

Selection parameters

Now to my point. It seems under my conditions it’s better to focus in first hand on one whole season as big colonies during which no treatment should have been needed (including winter and coming spring), to select breeders. BUT then use VSH testing to tell you which one probably are the best among them, and get confirmation of their status. Of course the breeders must be good in other respects, good honeycrop, good temper and low swarming tendency.

VSH is a good tool for selecting for Varroa resistance, especially when there are difficulties  using anything else, but also as a complement when other methods are used.  I’m glad I can make VSH tests, in addition to the DWV-test I use.

First crop from the multitest colony

Last year I gave almost a whole box of plastic frames 4.95 mm cellsize with natural positioning, http://www.elgon.es/diary/?p=384

This colony was a very nice colony, but needed some thymol as it came up with some wingless bees. It gave an average crop though. It wintered with the plastic in natural positioning as the upper third box full of honey. This was one of the few colonies I forgot to give the entrance reducer before winter so mice had created havoc in the bottom box. This seemed not to have set back the colony very much, unusual I would say. I thought about that: http://www.elgon.es/diary/?p=392

March 30 this year it looked very nice, http://www.elgon.es/diary/?p=404

MT-colony combs In the uppermost super the combs were capped almost to the sides.

In June I harvested the first crop. It gave the highest crop in that apiary, together with one other colony, mostly from winter rape and dandelions. Both difficult crops if you wait too long before harvesting. They both form crystals quickly and have a very low water content making the honey viscous. All four boxes above the excluder was harvested – 60 kg (132 pounds). No signs of varroa or virus, no wingless bees and no thymol given. Out of 9 colonies in that apiary 6 have needed some thymol, up till now.

MT-colony board All the four supers above the excluder were harvested

A very good sign is the relatively clean piece of hardboard (0.5×0.5 meter, 20×20 inch) in front of the colony. Reading the hardboard is very informative about what’s happening in the colony. A few cleaned out drone pupae, a few dead drones and worker bees.

The queen of the wall

Five days after I hived the swarm from the wall I checked it. I placed it about three km from the wall where it originated, to help form the ”stock of the region”. It wasn’t a very big swarm, but it will make it well for winter.

Swarm queenSwarm drone

It had placed itself on the foundations I had supplied them with and drawn quite some combs, partially filld them with honey and the queen had layed eggs in four or five shallows. A big queen, small drone and quite small workers.

Swarm house The bees have occupied the upper right corner and round the corner on the other side. There the original entrance was.

The wall colony is living in one of the upper corners of the house, for more than 10 years. Now the nearest other bees are 3 km away. 10 years ago 6-7 km.

Swarm propolis The entrance just below the window to the left. Below the bees have sealed cracks with propolis.

 

Three years ago the owners tried to tighten up the entrance between a couple of boards in the oyter wall of the house. After some time the bees had made a new entrance around the corner. Some cracks in the wall the bees have sealed with propolis.

Swarm entrance The bees are entering in the upper part of the opening and leaving at the bottom of it.

The bees enter the upper part of the entrance and leave from the lower part.

Taking home the breeder

Avelsavläggare1w

A week ago I brought home the breeder queens for ease of grafting. They should at least have been treatment free last year (2013) and they should not have been a new colony 2013. The queen should be at least two years old. The colony could have been a new colony the year before (2012), or an old colony also then. It could have been a colony with an old queen that got shifted to a new one 2012 with an already laying one mated in a mini nuc. It could have been a failing colony due to varroa 2012, so it got some treatment then, queen removed and a mature queen cell. It could have been a walk away split from a strong overwinterer 2012, the split making its own queen. The colony is now, compared to the rest in the apiary, a strong colony, very little of dead bees in front of the hive, no signs of varroa problems, good tempered, at least above average in honey crop in 2013.

The brood area is on three 12 frame shallow boxes. Most probably the queen is in the upper third box. Sometimes though in the lowest first box. Using no smoke not top drive down the queen I carefully lift off the supers to the side, put the upper third box on a closed bottom, the same procedure with the second box.

Avelsavläggare2w

Then I check the second box (or the upper third) for a broodframe with small larvae or eggs to make a queen from for the bees. I put in in the first bottom box that will be left on the stand. I have not checked for the queen. I know where she is, in one of the three boxes. I check the bottom box for brood. If there is very little brood, I take a brood frame from the upper third box as well. I just exchange the frames, take an empty frame from the bottom and put in the whole from where I took the broodframe.

If the bees are lively and fly a lot, which they shouldn’t as they are choosen for breeders, I have to be quick and put on the ventilated cover and strap the boxes to be moved to my home apiary. Both the taken boxes will be moved home. Most probably the queen is in one of them. It will show up quite quickly.

Avelsavläggare3w

Now there is one brood box left on the old stand, could be without food frames as it was the bottom box. So I take a couple of food frames from my storage from removed food frames from last autumn which I took from colonies that were maybe a little weaker not filling up the three boxes and that were heavy of stores. They got insulation dummy frames at the sides instead. Those food frames I put at the sides in a new box and then fill up with empty drawn combs. This box I put under the brood box left. Then the queen excluder with the supers on top, now lifted back. If the queen should be left here I will exchange those two brood boxes with one of the splits taken home. It has almost never happened. Those queenless splits will make a new queen, and most probably not swarm with a virgin if left alone, as they are weakened (and from a breeder colony).

When I come home I put the splits with a similar made box underneath the split, if needed with food frames. It’s good to give them even if it’s no food crisis as they will not have many field bees, and especially the one with the queen will use the stores for brood.

The one with queen will be calm. The one without will usually be more nervous looking for their missing queen.

I don’t count mites

I know it can be beneficial to count mites. But I don’t have the time. But those colonies I check for VSH, they will get figures enough to get the infection rate for mites in brood. (But I just check some.) Sometimes I’ve heard that two thirds of the mites are in the brood. If that’s correct then the infection rate on bees (phoretic mites) is half of that.

Many use the infection rate increase from one time till some time later to get a figure of resistance, saying the colony with lowest increase is more resistant. That might be true, but infection rate is dependent on other factors then mite reproduction success in the colony, such as reinvasion of different causes.

So I use the lazy method checking for signs of virus (DWV), thus also selecting for virus resistance. Then when I see this, I treat, with thymol, just the colony (-ies) showing virus. Over the years the number is decreasing and the amount of thymol is decreasing also, telling me this is a method that works.

Spritb For alcohol wash I recommend taking bees in the broodnest third frame from the back or one side to avoid including the queen in the alcohol and getting away from the entrance.

If you count mites, the most accurate method I think is alcohol wash, of as many bees you can afford (100-300 bees) when the colony has no brood (or as little brood as possible).

Sprit2b Shake the bottle with bees and alcohol strongly for a minute to loosen the mites. Pour them on a double sieve. Flush water on the bees strongly and count the mites in the second sieve. Also count the bees in the first sieve.

But beware where you take the sample. Don’t take it on bees close to the entrance. Mites are fewer there according to findings of Thomas Kober (personal information). So how do you avoid entrance bees if you have all the combs sitting with their edges towards the entrance? The best place maybe is in the broodnest but as far away from the entrance as possible, box two or even three maybe. I havn’t seen a paper on where the best place is. Maybe you have?

This is another reason I don’t count mites, the uncertanity if the density of mites is the same in different places in the hive.