Reinvasion is worst

Last year 2015 was a bad year for the bees in more than one respect. Long cold spring and bad summer. But late summer was good as was the autumn. The bees could recover and prepare for next year.

Fresh pollen was low in spring 2015 . The immune system wasn’t at its best. And the bees couldn’t fly as much as they needed. Where nosema was present it could infect new bees instead of disappear with sick bees as those couldn’t make it back to the hive.

I treated more hives and used more Thymol last year than I had done earlier years. Early in the season I saw what was coming and decided to try some new strategies to get forward on the path to better Varroa resistance and finally get rid of chemicals.

Leif Hjalmarsson

Very often I have reminded myself of the experiences from an apiary of Leif Hjalmarsson in the southern part of Sweden. He got 5 Elgon queens from me already in 1997 and established an apiary at least 2 miles from other bees. The bees to which he introduced the queens had been treated with Apistan for about 5 years and were very low in number of mites. The bees had probably been adapted somewhat to the presence of the mite. Leif used large cell size, 5.4 mm. He never had to use any miticide on those bees until he died early this year. I do miss him! He was dear friend and a good beekeeper.

Already when we started to combine the Monticola bee with our Swedish bees there could be seen resistance traits. Therefore I had hoped that Varroa mites would be no problems when they arrived in my apiaries. This would not be the case. Even though I had as well regressed my bees to small cell size, 4.9 mm.

I have been wondering since 2008 when the mite started to create problems, why they were a problem for my bees with me, but not for “my” bees with Leif? Last year I decided I had to let the fact that Leif Hjalmarsson established this apiary of his more than 2 miles from other bees affect how I designed my bee management. I want of course to get better resistance with my bees in my apiaries.

A lot of focus had to be put on avoiding reinvasion, bees picking up mites from colonies with high infestation level of mites, within my own apiaries and others within about 1.5 miles.

Better selection 2015

But the difficult circumstances for the bees last year also meant that selection pressure was stronger and it was easier to choose a good breeder, if there was any. And there were good breeders, especially colony S241 which I have mentioned in an earlier blog post, but also C243. I introduced many new queens in my colonies last year, especially from S241. I had only found one mite in S241 in the brood when I tried to found out the VSH degree. And that mite had no offspring.

1. Project 1, 3 miles from other bees in a forested area started in autumn 2014. I had not treated the colonies in this project in that autumn when the project apiary was established. During 2015 I treated a couple of colonies when they showed crippled winged bees. The varroa level was not alarmingly high, so virus effects came early in infestation. Evidently reinvasion from the colonies with DWV didn’t occur very much to the other colonies in the project apiary, as in autumn 2015 varroa level was low in all colonies. Varroa level was also very low this spring 2016, and so it is now late in summer 2016.

Bee shaker1 The Bee Shaker is a valuable tool in getting a quick and easy figure of the Varroa level in the bee colonies in an apiary. Type in the search box: Bee Shaker – at the top of this blog, and you will find more info about it.

2. Project 2 started late summer 2015 as I treated all colonies in an apiary 1.5 miles from other bees of mine with an effective pesticide/miticide in August that year (I hated to do use it), to mimic somewhat how the apiary of Hjalmarsson was established. The varroa level now in August 2016 was surprisingly low, almost not detectable. It was in this apiary I had planned to reduce Varroa level by removing all capped brood frames twice with a week in between, in those colonies showing higher Varroa level than 3%. The highest level now in August was 0.3%.

Bee shaker2 The Bee Shaker will help you to decide if any colonies has to be removed (or any other action taken) from your apiary in which you are developing the Varroa resistance in your bees. It’s a simple and quick method, but you kill 300 bees. That is though nothing compared to numerous bees dying if you do nothing. Viruses and mites killing thousands of bees besides the normal die offs from worn out bees in their daily work, where tens of thousands of bees are dying.

3. Those colonies I decided last year I would shift queens in this year, I treated with thymol in April/May this spring even if they showed no signs of Varroa or virus symptoms. With this I think I secured that those colonies wouldn’t produce mites that could reinvade the other colonies in the apiary. These kind of apiaries are the most numerous of mine. I have not checked the varroa level in all colonies spring and late summer in these apiaries.

Up til now in late August 2016 I have found this odd colony in just a few apiaries, showing one wingless bee. I have tested those colonies with the bee shaker for the Varroa level and only found a few colonies with a Varroa level higher than 3 %.

In one apiary I had this colony with a decreasing varroa level during the season. Three weeks after the early August measurement with just above 1 % Varroa level, I made a new measurement. Now it showed 5 %! Too many mites for the colony to have produced it during these three weeks. Less than a mile away there is another beekeeper, with Elgon bees, but not selected for Varroa resistance for some years. No wingless bees. The colony had probably picked up the many mites from one of his colonies. I didn’t treat, but gave it a sticky board on the bottom to check the natural downfall. And a new Varroa level check will be done in a month. Hopefully this colony will be able to reduce the Varroa level. We’ll see.

An apiary at the edge

Let’s look at one apiary at the edge of “my” Elgon area. With that I mean that drones from other beekeepers’ bees can influence the matings of virgin queens. Also the risk of reinvasion is of course higher. Last year was of course not only difficult for my bees but also for the bees of other beekeepers. In this apiary I treated two colonies quite a lot last year, and also this spring and shifted their queens. The other colonies in this apiary has not been treated this year. But they were all treated last year with Thymol. Now in August I saw a bee that looked like it had the beginning of wings being crippled in one of those colonies. So I tested the Varroa level, 4 mites in 350 bees = 1.1 % Varroa level. It got no treatment of course. Very pleasing result.

A couple of small apiaries

I have a couple of small apiaries in which I checked all colonies with the Bee shaker in spring this year, 0 or a couple of mites in 300 bees. No colonies treated this spring as I didn’t plan to shift any queens this year. I had shifted some last year. I checked these apiaries now in August.

In one of the small apiaries with two colonies and a split I found 4 mites in one of the big colonies and 32 (!) in 300 bees in the other. This was too many in the later colony for it to be able to produce them by itself. No crippled winged bees. Also a sign of that those mites were picked up from somewhere else. This colony had a history of needing Thymol every year, so I chose to treat with Thymol and am planning to finally shift the queen next year. 500 meter away is double the amount of hives of another beekeeper (with Elgon bees which were not from my selection in recent years). He had had problems with one of his colonies.

The situation in the other small apiary will be described later in a blogg post of its own.

Avoid reinvasion when bees adapt

The conclusion is that it’s very important to avoid reinvasion of mites when your bees are developing their ability to control the Varroa mites. They need mites to do that, but no or few extra mites from other colnies that makes it more difficult for them to survive.

On the other hand can the explanation for the better varroa resistance with my bees, as it seems, partly be explained by the fact that I shifted quite some queens last year to S241-daughters. Bess from their colonies will drift somewhat into other colonies, as bees from all colonies do. In this case these drifted bees may well help controlling the Varroa level and possibly also teaching the original bees of the colony to fight mites better.

Genetics is of course important when bees adapt, changes in the composition of the DNA. Selection by culling the worst and multiplying the best. But bees adapt too quickly for the genetic changes to explain in all. Epigentic changes is of uttermost importance here, changes how the existing DNA is expressed, how it’s used. It’s impossible to explain the resistance developing in S. America and S. Africa in about 5 years in any other way. As epigenetic changes occur when environmental changes act upon the chemical environment closest to the bees. The precense of the Varroa causes chemical changes in the bees, in the brood cells, etc. These epigenetical changes are inherited to next generations until new environmental changes cause other epigenetical changes. We understand that chemical help against Varroa will hinder the bees’ own control mechanisms to develop fully. There will be a balance act of avoiding all kinds of miticides as much as possible without letting the bee colonies die. Avoiding reinvasion will be very important then helping the bees developing their control mechanisms fully.

As was pointed out in a previous blog post, my bees are held on small cells, which may contribute to the very low overall mite level. The mite level in Leif Hjalmarsson’s apiary he didn’t treat for many years was at least in the beginning when we measured substantially higher. He used large cells.

I’m convinced that when the bees have learnt how to control mites effectively they can handle reinavsion of mites as well, maybe also in larger numbers. I would call that VISH (Varroa Intruder Sensitive Hygiene.:)) I suspect this can take some years. Then they probably sometimes need some reinvasion to keep their skill at a high level.

Small cell size important in breeding Varroa resistance

After reading the blogpost ”Breakthrough?” an European PhD-Scientist wrote me an email with the following comment:

After reading your post I realized that you do have small cell size, but you’re not mentioning it in the actual post. To make sure that the reader’s get the full picture, the main components of your management system, this should be explained for them.

For instance, for me it’s a fact, that the cellsize used in a selection program is a factor incorporated in the population just like springfeeding appears to create a dependency of that feed to make bees start an explosive spring behavior.

As our bees are still wild animals, you can select whatever you like (or forget to see as selection-factor) to specialize your bees. Feel very good that your selection works.

But looking at the picture I have, some more ’vitality’ comes with better Varroa control. More or less ’Race’-independent. Question for me: ’slight inbreeding effect’?”

A valuable comment which gives food for thought. Thanks!

Small cell size (SC) is so natural for me, that it’s the normal thing. I forget it sometimes. Those small quick bees flying directly into the entrance are what I expect when looking at a bee colony.

It’s interesting Eric Erickson in Tucson when he started his breeding project for Varroa resistance found that many survivors that he used in his program were on 5.1 mm cell size. This was quite smaller than the most common 5.4 mm. http://www.elgon.es/diary/?p=457

Eric_EricksonF Eric Erickson when I and Hans-Otto Johnsen visited him and Lenard Hines about ten years ago talking Varroa resistance.

Erickson is said to have been forced to retire earlier than he should have. He died earlier this year (2016) well above his 70th year. There were nice obituaries, but I couldn’t find a word about his Varroa resistance program. Strange.

Every spring since I started to take my bees down to small cell size, when I took care of the dead outs after winter I saw that many combs were poorly drawn. The bees had many times failed to follow the 4.9-pattern and drawn patches of sometimes bigger worker cells and sometimes a lot of drone cells. Also when managing struggling colonies during the season the same observation was many times made. This year very little of this was seen. But I still have some colonies that can’t follow the 4.9 pattern when drawing their own combs (but they do well on already drawn small cell combs, especially colonies with heritage from queens from other beekeepers I have found interesting to try.

At the same time I’m aware that there are beekeepers that havn’t treated against Varroa for many years that still use large cell sizes. I draw he conclusion that it is possible to keep bees on large cell size and still be treatment free. But I see very little reason for not going down in cell size. The most important reason is that the bees themselves go smaller when given the chance. It must have something to do with their fitness and survival, not actually in first place in relation to Varroa.

Concerning the earlier blog post “Breakthrough?” and that I have used very little Thymol this year. Last year at the end of July I had used Thymol on about 70% of the colonies. This year at the same time of the year I have used Thymol on 2 colonies out of about 150 (I had about 150 last year too). I find it hard to believe that the only reason would be a successful breeder queen. I think better pollen availability this year has given a better immune system. And reinvasion I think is less problematic. With the latter in mind, I can imagine that adaptation to better control the mites is developing in the bees. And the absence of chemicals, in this case thymol, do not disturb this adaptation.

Another change in management is that I don’t move bees between apiaries. When making splits they stay in the same apiary. If there’s only one colony in a yard I split that colony and build up the apiary again this way (from now on). Some minor movements of bees have been done though.

Breakthrough?

Last year I saw more wingless bees than I had expected and I used more thymol than I had expected. I realized that I could partially thank the bad weather fort thias. The bees had got too little of pollen. Their immune system was not at its peak.
It was not easy to find suitable breeder queens, ie, who showed great varroa resistance. I found a colony that had not needed varroa treatment for a few years and it had not had any wingless bees. VSH test could not be done as I found only one mite in more than 100 pupae. And this mite had no offspring. So if you would allow it to determine the VSH-level, this would be 100% VSH. However, the so-called statistical significance was non-existent because of the low number of mites (just one single one). Well, the low number of mites were decisive. S241 was last year’s most important breeder colony.
This summer, I have not seen much of mites and almost no wingless bees so far. Some odd mites in 4 colonies, of more than 140 hives. Well, those who got the most thymol last year, got Thymol in May this year and then got its Queen replaced. So that’s one explanation, about 15 colonies. A colony that was a split from one of those 15, which raised a queen of their own was the first. Due to it’s history it got Thymol as soon as I saw the wingless bee. The queen will be shifted.

A problem hive had got a daughter of S241 last year. A Beeshaker test though showed 0% varroa level. Viruses still a problem in spite of no mites? 

The other day I saw a wingless bee on the hard board in front of the entrance of a colony that had got a lot of Thymol last year. It did not get Thymol in May as it was shifting its queen in May, I found a dead virgin on the hard board and drew that conclusion. I decided to make a test with the Bee shaker due to the wingless bee. I did it yesterday, July 20, 19 mites out of minimum 300 bees , 6.3% varroa level. The hive got Thymol.

1DWV 19 mites, 6.3% Varroa level – Thymol.

Today I came to an apiary with a daughter of the 241 (introduced in 2015) which have had no need for Varroa treatment in a couple of years, neither 2014 nor 2015. This colony was now a strong colony that given a good crop. With still some time to go for eventual more honey to come.

241d No need for treatment for a couple of years (2014 and 2015) plus probably this year. Actually lower Varroa level now compared with spring ( at least not bigger).

In May, I tested interesting candidates for being breeders with the Bee shaker. This 241-daughter was among those of course. The Varroa level was 2%. I didn’t give it Thymol as this was not more than 3%. I had several colonies, including several 241-daughters, that got only a few grams of thymol in spring 2015, which showed no mites at all (zero) out of more than 300 bees. The two best with different heritage (one was a 241-daughter) I used as breeders this year.

1% 4 mites, 1,3% Varroa level now.

2% -colony I tested today July 21 regarding the Varroa level, 4 mites out of a little more than 300 bees. 1.3% infestation level. At least not higher Varroa level after 2.5 months. A strong hive that has given a good crop. The Varroa level would have been much higher if the bees could not get rid of mites themselves. This colony has thus been able to get rid of mites by themselves. What a great feeling!
Now this does probably not only depend on the queen. It was introduced to a colony that had not needed any treatment for at least a year. The worker bees might have learned the new queen’s bees some tricks how to deal with mites. It would not surprise me if there is a combination of reasons for the mite fighting ability of this colony. http://www.elgon.es/diary/?p=880 http://www.elgon.es/diary/?p=890

The Bee Shaker – where to take the sample

It has been discussed where to take the bees when making the test for infestation level of Varroa mites with the Bee Shaker. From a brood frame or just near the brood. The first week of May, I did a test with the Bee Shaker of a number of bee colonies. After that I inserted sticky boards to collect the natural downfall. This happened to coincide so that two colonies tested with the Bee Shaker also got sticky boards. The sample of bees for the Bee Shaker were taken from the middle of a the super just above the queen excluder.

Skakburksprovtagning A good compromise place to take the beesample from to the Bee Shaker is in the middle of the first super above the queen excluder. You don’t have to look for the queen. Not close to the entrance where the number of mites are fewer than average. And not far awav from the brood, when there are many honey supers. The number seems to vary more there.

Those colonies tested were choosen as I had found them to be potential breeders. The two colonies mentioned both had one (1) mite in the Bee Shaker out of about 350 bees, ie about 0.3% infestation level. Three weeks of natural downfall thereafter gave 7 mites from one and 8 from the other. The sticky boards covered almost the entire bottom. Let’s say I missed seeing two mites. If so it was thus about 0.5 mites per day.

Multiplying this figure with 120 I have heard gives a figure for the total number of mites in the colony. 0.5 x 120 = 60 mites in total then. The number of bees in the colonies were at least 30 000. But let’s say it was 30 000. Then 60/30000 would maybe give an infestation rate = 0.2%. But now I’ve seen reports that one should multiply by 30 (20-40). Then it will be completely different figures (in “favor” of the Bee Shaker). Collecting natural downfall should be done during the normal brood period, not in the very beginning or the very end of the brood season. In the case of the natural downfall of varroa mites, mites will also come from mites emerging from brood cells that have hatched during these three weeks. The natural downfall should therefore have given more mites compared with the Bee Shaker if these methods should have given corresponding figures. Therefore, the conclusion should be that the Bee Shaker revealed a greater proportion of the total number of mites in the hives than the natural downfall did.

The Bee Shaker could therefore be trusted to be an enough reliable tool to show infestation levels of Varroa mites, when samples are taken close to the brood, but not from brood frames. http://www.elgon.es/diary/?p=914

Wingless bees and varroa level

Before varroan came there could be seen occasional bees with undeveloped/deformed wings in spring. Maybe it was the influence of DWV, Deformed Wing Virus. But it may also have been chilled brood. During the final phase of the pupa development to finished bee the wings are formed. Cold nights and too much of brood could maybe have caused undeveloped wings.

Today, one can probably assume that when you see a wingless bee, it’s DWV responsible. Varroa mites are paving the way for many viruses into pupae and adult bees that had not previously bothered bees. Moreover, these viruses multiply in mites. So today mites spread viruses more efficiently than when the mite had just arrived in Europe. Why that is so is another interesting discussion that probably involves the use of miticides.

 

The Bee Shaker

The Bee Shaker is a great way to keep track of the level of mites in the bee colony, especially in spring and late summer, so the amount of virus can be kept reasonably low by allowing people to fight the mite if it exceeds a certain degree of infestation. (If that is the strategy chosen.) A good benchmark that many use today is 3%, three mites on one hundred bees (9 mites in 300 bees/1 deciliter of bees).

It also means that to develop a bee stock towards better varroa resistance, you don’t treat against the mite, especially below a mite level of 3%, whenever in the season it is measured.

But if there are wingless bees in the bee colony? It’s usually a sign of DWV and thus too many mites. Here is the Bee Shaker again a good tool, to find out if there really is a high degree of infestation of mites when you see a wingless bee. If you decide to treat against mites if the level is high you might do it to prevent the spread of mites to other colonies nearby.

 

A colony with a wingless bee

Last year’s breeder queens seem to have produced many queens that have given colonies that control the mites quite well. One of these daughter queens was introduced to a colony that had problems with mites. Perhaps the biggest problem was virus.

This colony was quite weak in this spring and developed slowly, compared to the other colonies in the apiary. I concluded that I would have to check the brood nest to find out the cause. Maybe the colony was shifting their queen?

On a later visit to the apiary about June 20, I saw one, only one, wingless live bee on the hard board in front of the entrance. I then looked in the brood nest, but saw no more wingless bees on the brood frames. But the brood frames had a so called shot gun pattern with a lot of “holes” where you would have expected capped brood as the other cells on the comb contained capped brood. Many pupae seemed to have been removed by the bees. Most likely not due to inbreeding as the queen had mated in the apiary and the number Elgon colonies in the neighborhood was quite high. No trace of any brood disease could be seen so I concluded that a likely cause could be cleaning out of varroa-infested brood. Or could the bees detect virus in the pupae and remove it, without there being a mite in the cell, and remove the pupae?

Could that be the reason why the colony developed so slowly – that the bees were throwing out mites? How had they managed? The wingless bee could indicate that they had not done so well and that the amount of mites was big. Now it was time for a Bee Shaker test to find out the level of Varroa infestation. (Here you can read more about The Bee Shaker, its uses and possibilities: http://www.elgon.es/diary/?p=809)

Here you can see a video clip when doing this test (sorry I’m talking my mother tounge Swedish):

The sample showed zero (0) mites! Then it’s no use to treat, There were far too few mites in the colony. Why had there been a wingless bee recently before the test?

VarroaVirus The brood frames looked less spotty and the colony stronger.

July 8 I was visiting the apiary again. Once again I saw a wingless bee on the hardboard. But now I knew the Varroa level was low. Still no use treating. I looked in the brood nest. The colony was a little stronger still and the brood frames had fewer “holes”. The bees look healthy. They were recovering.

Virus apparently remain in the colony for a while after mites are eradicated – by the beekeeper or the bees.

A good pdf-editor I like; maybe you need one too

I’ve been working with computers, Mac and PC, for many years, using them for making journals among other things, using graphic, photo and layout applications primarily. This blog though is dealing with beekeeping issues and normally nothing else. But I’ll make an exception this time.

I and a former colleague with my former employer have made a revision of a book of 350 pages in Swedish about beekeeping, Boken om biodling (The Book about Beekeeping). I helped trying to fix a proper way of updating the pdf printing file for the book.

The original layout file was made with Adobes InDesign. But that file wasn’t available. Only the pdf printing file. We thought that Adobes application Acrobat would do the job.

Some of the fonts in the pdf-file were present in our computers, some were not. Acrobat reflow the text in several places even with the fonts present in the computer, making the text longer. This would make the job unnecessarily laborious. And the fonts not present on the computer made the problem still worse.

I began searching for alternatives and found some, mostly for Windows but also for Mac. Everyone of them had drawbacks when it came to editing the text and/or changing pictures or pricing. It’s common today with pdf type of files. And from time to time it will be a need for small or bigger changes in such a file. I want to give a good alternative. It’s not free, but it’s the best I’ve tried for editing pdf-files, taken in account the different pro and cons.

This application does the job easily, Infix Pro (http://www.iceni.com/). Works with both Mac and PC. It’s like working in a layout application.. Even if the font isn’t on the computer Infix does the job nicely anyway. If you want to replace an inbedded font which is not present on the computer to one that is, it’s easily done, on all places in the document at the same time.

You easily connect text on different pages which all belongs to the same article. This makes the text reflow nicely when needed. You can easily replace or place new pictures. And Iceni has a very good support team which helps you quick eough when you need help.

Struggles for the survival of honey bees

S SB

SB is a relatively new and dedicated beekeeper in southern Germany. She is interested in different kinds of bees and their place in the ecological system. I asked her to tell her story and her struggles helping her bees to survive and thrive on their own as much as possible without chemicals. She writes:

After watching wild bees for some years I wanted to have honeybees and took lessons given by an organic beekeeper. In the year 2014 I bought my first colony from him. It was a Carnica cross on natural comb, built by the bees without the help of wax foundation. They had been treated with oxalic and formic acid against the varroa. But they were sick anyway!

S Natural comb My first colony was a Carnica (Carniolan) colony on natural comb.

I tried to find a way out of this chemical strategy that seemingly didn’t help. I got some information on internet and started watching how bees defend themselves against illnesses. I don’t want to have them close to other bees. I tried to help them with sugar powder dusting to rid them of the mites sitting on bees. After treatment with formic acid in summer, they had a natural downfall of 30 mites per day. After sugaring the whole hive ten times with 2 days in between the natural downfall of mites were 5 per day. This involved a lot of work and still didn’t do the job. The bees had chalk brood too!

I measured cell size on their natural comb. It was 5.0 mm in the brood area, 5.4 in food area and drone cells began at 5.6. All honey was taken when harvested, so they lived on sugar syrup for a long time of the year. They died in february 2015, not having enough bees to warm the hive!

S AMM queen The AMM queen

I had found some contacts through internet and was able to get 4 hives in 2015 which weren`t treated with chemicals for some years. One was of the dark bee Apis mellifera mellifera (AMM) , three were Carnica (Carniolans). I made some splits and wintered 3 of the AMM origin and 5 of the Carnica origin.

The former owner had a crisis being the victim of a migratory beekeeper whose hives most probably caused reinfestation bringing a lot of mites into his hives. He overcame this crisis combining the weakest of his hives, so they became strong enough to defend themselves. Some survived. In some of these he introduced a AMM variety of queens that had a reputation of being more resistant.

My aim was to follow Dee Lusby`s in Arizona way of beekeeping as much as possible (http://beesource.com/point-of-view/dee-lusby). Using small cell foundation, leaving with the bees enough honey for food, using so called housel position of the combs, what she calls unlimited broodnest and using no treatment (if possible).

S Carnicas Now I have 11 colonies and high hopes.

All 8 hives survived winter, but in spring 2016 I had to eliminate one of them because its bees were too susceptible to virus (another than DWV). I have made some splits and have now in May 11 hives and high hopes. The bees are my teachers. I want them to survive.

S hygienic The AMM I have are showing hygienic behaviour against mites in the brood. Now I have seen it also in my Carniolan crossings (the picture).

I don’t do drone brood cutting as I want the mite to continue being a drone parasite in first place and not a worker bee parasite. I’m happy to see more and more of hygienic behavior against the mite, also in drone brood. Now also in the Carniolan crossings.

At last I want to quote Kirk Webster (http://kirkwebster.com):

“Beekeeping now has the dubious honor of becoming the first part of our system of industrial agriculture to actually fall apart. Let’s stop pretending that something else is going on. We no longer have enough bees to pollinate our crops. Each time the bees go through a downturn, we respond by making things more stressful for them, rather than less – we move them around more often, expose them to still more toxic substances, or fill the equipment up again with more untested and poorly adapted stock. We blame the weather, the mites, the markets, new diseases, consumers, the Chinese, the Germans, the (fill in your favorite scapegoat), other beekeepers, the packers, the scientific community, the price of gas, global warming – anything rather than face up to what’s really happening. We are losing the ability to take care of living things.”

We are at big risk losing the ability to take care of living things. Thank you everyone who is helping me to improve myself as a beekeeper.

Keeping track of the infestation level

In the search for breeders for this season I tested a number of hives for the infestation level of Varroa mites in the beginning of May. Those choosen had not been treated for mites either not at all last season, or very little with thymol in the spring last year after showing an odd wingless bee. This was before the time of the Beeshaker with me. Better hade been to use the Beeshaker before using thymol to really know the infestation level.

I used the Beeshaker (more info about it and how to use it: http://www.elgon.es/diary/?cat=85). There were colonies with 0 mites from somewhat more than 300 bees. The best of those I use as breeders this year.

I also gave a number of colonies a thin tray with a coarse mesh that bees couldn’t pass hrough. High enough from the bottom of the tray so the bees couldn’t clean the tray. It covered almost the entire bottom. The purpose was to collect natural downfall of mites over a period of time.

I send some queens abroad and the Board of agriculture wants to be sure I have no tropilaelaps mites and no small hive beetles. (Both of those two pests have not been found in Sweden, tropilaelaps not even in Europe, the small hive beetle only in Italy.) Three weeks before the veterinary and the bee inspector came to visit for checking my bees I inserted these thin trays. Of course the inspector and vet also checked for American foul brood.

Varroagaller Varroa trays for checking natural downfall of mites. The one to the left without mesh cover.

Two of those hives I had checked with the Beeshaker got a tray. Three weeks later one of them had 7 mites on the tray. The other had 8. The bee shaker had given 1 mite each for these two hives.

1 mite per 300 bees is 0.3% infestation level on the bees (not counting the mites in the brood, those are usually at least the double amount).

Let’s say I missed 2-3 mites of the natural downfall. That would then be 10 mites in let’s say 20 days for easy math. That gives 0.5 mite per day. It’s been said that natural downfall per day during the brood season multiplied by 120 gives about the total number of mites in the colony. That would make 60 mites in total in those two colonies. The number of bees in those colonies were more than 30,000 each. But let’s say it was 30,000. If we divide 60 by 30,000 we get an infestation level of 0.2%. This level is though including the mites that had been in the brood during these 20 days, so the figure is not directly comparable with the 0.3% to confirm that the two methods give about the same result. The estimation of multiplying with 120 and other uncertainties makes comparison and/or the methods not exact anyway.

Does this comparison give an indication that these methods are good enough for checking the varroa infestation? Both methods have been used by others to decide when to treat or as a selection help for varroa resistance.

When the infestation level is so low as given above, it’s not possible to check the VSH trait either, as you will find too few pupae with mites. You can ask yourself if it’s at all necessary to test for mites anymore. I agree. But all my hives are not as good as these and reinfestation occurs. So I think I have to keep track in some way. Not in first place I think to find the best ones, but to find the ones with most varroa so I can protect the others from reinfestation.

The perfect resistant colony is of course such a one that is not very much affected by reinfestation, not letting in bees with mites on them for example. I will test colonies in August as well and I will check the hard boards in front of the hives for crippled wing bees or grey young bees crawling around as indications for viruses following to high varroa infestation.

Varroa resistant worker bees

Magnus was a beekeeper in his youth in western Sweden. He quit in 1996 but started again in 2013 with his wife Ulrika. Then they bought from an older beekeepers a pavilion with seven bee colonies, most of which were splits, new colonies.

Varberg1 It was a big pavilion on wheels that they bought.

It was not crowded with bees where this beekeeper lived from whom they bought the bees. Maybe a couple of miles (3 km) to other bees than his. He treated with oxalic acid against Varroa once a year. Nothing more was used for keeping the Varroa population down. And he bought a Buckfast queen now and then to help the genetic variation.

Varberg2 The hives in the pavilion are long hives with 30 combs 12″x12″ (30 x 30 cm).

The pavilion was moved to Magnus and Ulrika in September. They saw wingless bees from three colonies. Two of these were splits from the third. Of the other four were at least two splits from one of the rest, No. 9. The fourth, No. 10, appeared to be related to No. 9, because of the behavior and appearance. Maybe No. 9 was a split from No. 10 in 2012. The argument for this is that in 2014 the queen just fell of the combs in No 10 and died. Perhaps the queen was the oldest of the two.

Magnus and Ulrika has their bees quite isolated too (about 3 km) in relation to other bees. In October 2013 they treated all seven colonies with oxalic acid. From the three with wingless bees fell very many mites due to the treatment. From the other four just about 10 mites from each. These four were also the only one to survive the winter.

 

Low level start in 2014

In August 2014 they treated all colonies with thymol. Now they were ten. Magnus and Ulrika wanted to bring all colonies into a low level situation concerning mites as a start for the coming years. The next year they planned to check the infestation level of mites with the bee shaker bootle and treat only those with an infestation level of at least 3% in August.

They probably did too many splits, as some were a bit weak in autumn. No. 10 was still there, but with a new Buckfast queen from a queen breeder. No split had a daughter of No. 9 or No. 10 as its queen. Only No. 9 had its original queen.

No colony had been purchased and brought into their area from “outside”. All new colonies were splits from the first four who survived the first winter with Magnus and Ulrika.

The mites that fell after thymol treatment were about as many as the previous year after the oxalic acid treatment, that is very few.

Seven survived the winter. Three splits were obviously too small and did not make it.

 

Bee shaker 2015

In autumn 2015, they wintered 13 colonies. They controlled the infestation rate in August with the help of the bee shaker (http://www.elgon.es/diary/?p=794), ie alcohol sample of 300 bees. Only the “old” colonies were tested. Magnus and Ulrika did not want to weaken the splits made in 2015. Two of these were a bit weak in the autumn due to queen problems. If an “old” colony had more than 3% infestation rate (9 mites from 300 bees) also the splits made from it would be treated was the strategy.

Those which had higher infestation rate than 3% in August were treated with thymol. There were three colonies that had just over 3%. Only those three which no splits had been taken from. Some of the other “old” colonies had only one mite from 300 bees, i.e. 0.3% infestation level. All the others except the three were not treated.

Ten colonies survived to 2016. Two of the three dead were the weak due queen problems in the autumn. The third died of local starvation. There were some empty frames between food combs and the bee cluster.

No colony during the last two winters have died because of large levels of Varroa. Varroa is evidently not a problem. Varroa levels have always been low in these colonies that originated from bees from the No. 9 and No. 10, also in 2013.

 

The colonies from the No. 9 and No. 10th

What naturally would come to mind is that we have found a tiny varroa resistant local bee stock genetically, if the queens are all descended from the No. 9 and No. 10. But that is not the case! Several of the daughter colonies had received queen pupae from a queen breeder. Some had been laying queens from the same breeder. He doesn’t select for varroa resistance and use effective miticides. Still, even colonies with these queens have very small levels of varroa. But the worker bees that these queens were introduced into came directly or “indirectly” from No. 9 or No. 10. Some splits from No. 9 were made in 2015. The other “mother colonies” were splits made in 2014 from No. 9, though with queens from a Buckfast queen breeder. These colonies are not ffsprings genetically, “only” “social offsprings” through the worker bees. The colony No. 10, is the social offspring of the original No. 10. Eight colonies are social offsprings of No. 9. No. 9 have the original queen. Only No. 9 have a “true” varroa resistant genetic set up.

 

Naturrum 2016

The first weekend in April 2016, I had a lecture at the Visitor Centre at Getteron at the west coast of Sweden close to the little town Varberg. I talked about breeding bees resistant to varroa. In the afternoon there were some workshops. One on how to check the infestation level of Varroa with the Bee shaker. The other how to make dish cloth pieces with thymol to treat against Varroa.

Varberg3 Magnus and Ulrika pouring alcohol in the Bee shaker. Somewhat more.

Magnus had brought a colony that hadn’t been treated against varroa the previous year. The queen was an introduced egg-laying Buckfast queen from a queen breeder. A queen which was not selected for varroa resistance. We hoped it would be a substantial amount of varroa in the colony so there would be some to count at the bottom of the Bee shaker.

Varberg4 The fourth comb from the rear with a lot of bees on it but no brood, to minimize the risk of including the queen.

Varberg5 The bees were shaken into a corner. With a measuring cup a little more than 1 dl bees were talken and poured into one half of the Bee shaker.

Varberg6 After the bees had been poured into one half of the Bee shaker the lids were screwed on top. Then the alcohol was poured on the bees from the other half. This half was then screwed to the rest. Now the Bee shaker was shaken for one minute. Turned around, still shaken until all the alcohol had went down in the lower part.

 

Too few mites

In August 2015 it was one mite in 300 bees in that test colony at the workshop. Now April 2 the colony was a strong and healthy colony of bees filling the box that had been the winter room. The bees were very calm and sampling went well. I lifted the fourth comb from the rear, with no brood, but close to the brood. To our “disappointment” it showed only one mite in 300 bees. One can truly say that we were surprised.

Varberg7 When all the alcohol had went down, the Bee shaker was lifted above the head and the mites were counted on the bottom of the Bee shaker.

How could this colony be varroa resistant? And No. 9? And the colonies that were made with bees from No. 9 but with no daughter queen from No. 9. All Magnus’ and Ulrika’s current colonies and their social offsprings have demonstrated surprisingly low amounts of mites all of the years with them. Although their queens are not genetically related to the original resistant colonies. They are though social offspring, as described above what that means.

 

The explanation

I had in my lecture talked about the experience of Hans-Otto Johnsen and Terje Reinertsen in Norway that can hardly be explained otherwise than that worker bees in resistant colonies teach other bees how to control mites.

Sampling with the Bee shaker on Getteron confirmed what I had lectured in a most interesting way.

 

Look for resistant bees

Now is the time for beekeepers that have had varroa in their colonies for a few years and have not yet checked the downfall of mites after treating. Check the differences of downfalls between different colonies. Especially you can discover good colonies in apiaries located somewhat isolated and in which there are not so many bee colonies. This lessen the risk for reinvasion of mites in the colonies. It’s good if the apiary have somewhat developed a stock of its own, ie no colonies or packages have been brought into the apiary in recent years and mostly queens have been bred from colonies in the apiary.

I’m sure there are many resistant colonies to be found today, but you must look for them.

You should make splits from the best ones.

The poorest colonies should not be used to make splits from, in any case you should avoid it.

You can buy Bee shakers here: http://www.elgon.es/diary/?p=809

 

Resistant genes are important but resistant worker bees are more important

Of course, it requires a certain amount of resistant genes for a colony of bees to be able to develop resistance and be able to teach other worker bees how to control mites. When there are colonies which have developed good resistance it seems less genetic resistance quality is required to be able to be taught ability to control mites than to initially develop and learn this property.

 

If you find resistant colonies

If you find resistant colonies, even if they are somewhat bad tempered, swarmy, and only give small crops of honey, take care of them like golden nuggets. Move them if you can to an apiary of their own somewhat isolated, a couple of miles (3 km) to the other bees. Make splits from them and give those splits pupae bred from good tempered bees, reluctant to swarm and high producing.. Then continue to do splits following year from the best varroa resistant colonies and let them make their own queens. Doing so also from the original resistant colonies and let them make their own queens. Now there are good drones in respect to other good qualities from the previous year’s new colonies. Continue the following years to replace the poorest queens with those bred from the best in the apiary.

Learning and teaching

 

Hans-Otto Johnsen was very skilled already in his youth keeping old American cars and trucks going. That skill can be very handy for a commercial beekeeper.

For many years he worked as an expert on explosives, but he got poisoned by nitroglycerine and had to change his job for making a living, so he turned to beekeeping.

At the university

For a number of years he worked as a technician under Prof. Stig Omholt in Norway and at the same time developing his commercial operation. His experience from these years has helped him in developing his Varroa resistant bee stock.

HAns-Otto brood A good brood comb in one of his Norwegian type of combs before he switched to medium Langstroth size.

Quite soon he got to know me and wanted Elgon stock to work with. He imported quite a number of splits from me. He kept track of the Varroa levels in the colonies and stopped using any type of chemical to fight anything in the hives. He wanted his bees to develop their ability to survive, which they did.

Hans-Otto & Ed Ed Lusby and Hans-Otto discussing small cell beekeeping at a fuel filling stop on our way to one of the apiaries of Lusbys’ in the Sonoran desert.

In America

We travelled together several times to America and studied small cell beekeepers and wax foundation producers. Hans-Otto bought equipment and started producing wax foundation, small cell and large cell as well as different sizes of drone foundation. His mechanical and engineer abilities showed themselves to be very useful as he changed and improved the equipment, for example the cooling of the drum for producing rolls of uniform sheet for feeding the plain and foundation rollers. Also the setup of plain and foundation rollers needed according to his opinion more controls of individual speeds for different parts of the production process, which he included in the setup.

Hans-Otto and GAry Dadnt Hans-Otto and Gary Dadant discussing wax foundation production during a visit with Dadant’s in Hamilton.

Research

He started to plan and set up different tests for looking at the effects of different cell sizes in brood combs and to produce virus free drones to mate with virgin queens. He saw that bees easier recognized (and removed) when drone brood was infested with mites when these cells were smaller, which they naturally are with smaller worker brood cells. He also saw that mites more readily infested the biggest drone cells.

He was involved in small cell tests, of his own and together with others. One can be found here: http://beesource.com/point-of-view/hans-otto-johnsen/survival-of-a-commercial-beekeeper-in-norway/

Today Hans-Otto has research money from the Department of Agriculture in Norway.

Resistant stock

He developed his bees in quite isolated areas, but not totally isolated, so sometimes the bees were mated to carniolans, buckfasts and the native brown bee (Mellifera mellifera). He also worked together with Terje Reinertsen, another Norwegian beekeeper, very similar to him when it comes to beekeeping. They exchanged breeding material. Both of them have discovered that their bees teach other bees how to get rid of mites. It seems this ability to teach new bees is very important knowledge when developing a Varroa resistant stock.

Today Hans-Otto hasn’t treated his bees for 15 years. The levels of mites are normally very low in his and Terje’s colonies and he never sees any wingless bees. In 2014 the bees of Terje were tested for Varroa levels by the Norwegian Beekeeping Association in preparation for planned research. (Birøkteren, vol 131, 2015(1), pages 13 and 24. The Bee Journal of the Norwegian Beekeepers Association.) The levels were so low it was difficult to calculate the reproduction rate.

When Hans-Otto moves his bees to the heather in late summer, for producing heather honey, his bees quickly pick up quite some mites. The natural downfall of mites will then be higher until about a month before the frost will make the bees form winter cluster. Then the downfall is almost zero again.

Book contribution

In 2010 Georgia Pellegrini (https://en.wikipedia.org/wiki/Georgia_Pellegrini) published her first book on natural food: Food Heroes (http://www.amazon.com/Food-Heroes-Culinary-Preserving-Tradition/dp/1584798548) She included a chapter about Hans-Otto and his focus on natural production of honey. For example he concludes that small cell bees are more biologically optimized than large cell bees. Thus research done with small cell bees are more reliable concerning what bees are and how they react naturally. In short, research results with small bees are more reliable.

In this context it’s interesting to notify that Norwegian wax is almost pesticide free.

HansOttoJohnsen An important part in his quality control is producing wax foundation as he thinks will be the best help for the bees.

Learning and teaching

Today we understand that adaptation of bees to fighting Varroa isn’t only selection breeding, natural or beekeepers’, for changing the DNA composition, but also epigenteic adaptation, the change of expression of the DNA as a result of changed environmental pressure on the bees. This turns the focus to the importance of locally adapted bee stock. Now research is going on with a third adaptation step, how bees learn how to deal with challenges and how they pass on this knowledge to other bees, worker bees to worker bees.

Hans-Otto caught a carniolan swarm of not resistant large bees that choose one of his swarm traps for their new home. After establishing this swarm in one of his apiaries he shifted its place with one of his resistant colonies. So this nonresistant colony received the field bees of a resistant colony. Afterwards they both behaved like resistant colonies.

One year he bough buckfast virgin queens not selected for Varroa resistance. He put them in splits made from his bees. The virgins mated in his apiaries. These splits were spread out in different apiaries of his. For two years they kept their colonies working fine and resistant to mites as good as his other colonies.

Now these two experiments absolutely are food for thought.

More than15 minutes of fame

Definitely Hans-Otto Johnsen is worthy of more than the 15 minutes of fame, one commentator thought was enough.