1500 Varroa Treatment Free

  South Dakota is Buffalo and Indian land in the northern part of the Midwest.

I talked to Chris Baldwin some time ago. He is a commercial beekeeper running about 1500 bee colonies. In summer his bees are closer to his home in South Dakota. In February they pollinate Almonds in California. After that they are going to east Texas for queen breeding and splitting. Focus in handling the mites is not eliminating the mites, says Chris. It’s eliminating susceptible bees.

 Beginning of November the bees go to Texas for winter. February 1 to California for Almond pollination. March to Texas for splitting and supering. May to South Dakota for honey. (Basic map illusttration: http-//d-maps.com_carte.php?num_car=5184&lang=en)

Chris hasn’t been treating his bees against mites for more than ten years. Last Coumaphos 2003, Only Oxalic 2004 and 2005. Nothing in 2006 and finally Thymol in 2007. After that nothing. He’s loosing bees yes, but not because of mites really. He’s keeping bees like bees were kept before the arrival of the Varroa mite. When he talked to another commercial beekeeper recently, his comment about Chris’ bees was that they probably could handle all farmers chemicals better as they didn’t had to deal with miticides as well in their hives.

Blacklisted

When he shares his experiences with others he is many times surprised of the response, or lack of response. Maybe some think he’s earning money on selling queens from his “pretended varroa resistant bee stock”. Maybe because almost all(?) scientists say you must treat against mites to get your bees to survive. But Chris don’t do that. He lives on his bees producing honey and pollinating crops.

There are so many examples now of treatment free operations for many years that we can write down a working plan to produce resistant stocks. It’s not telling the whole truth leaving out the growing number of treatment free beekeepers and their working plans for their success.

When he talks to scientists, many well known, about his bees, they look kind of strange in silence for a while and then walk away. They don’t show up at his yards wanting to investigate his bees and methods to find out more, as you would expect.

Chris has good references, the bee inspectors in his areas in South Dakota and Texas.

Once he had a columnist from a bee journal showing up asking and looking at his operation. I’m sure the readers would have loved to know more about how Chris is managing his bees. But he’s doing many things the opposite way to what many times is preached from the front.

No wonder he said to me he feels like he’s blacklisted. By whom and why, if that’s the case?

A bigger picture

After some additional communication with Chris about his operation the picture gets more clear and gives more food for thought. It’s really interesting and valuable to put his experiences and management system beside others’ to get a better understanding of our fascinating honey bee and what it means to us as an economic resource and understanding its role in nature.

California in February

Chris may well be the only big commercial beekeeper focused on pollination services that is treatment free when it comes too the Varroa mite. His bees are exposed to agricultural chemicals, drifting of other beekeepers’ bees into his colonies (which may well bring mites and pathogens of different kinds) and his bees visiting weakened hives to rob from (and pick up mites and pathogens).

It’s not difficult to understand that his bees might well have problems due to this. Pathogens like nosema, plus chemical residues from spraying of the almonds for example and extra mites and viruses picked up will make life hard for the bees when they go back east Texas in March after almond pollination in California.

  After pollination in California the bees go to Texas, here ready for supering.

Texas in March

The colonies return to Texas in late March. There they are supered for growth and maybe honey production. April flows in Texas are unpredictable.

Not all colonies went to California from Texas February 1 for pollination of the almonds. The remainder are scattered to out yards for buildup and also prepared for cellbuilding, which begins in early March in Texas. Nucs are made in March and April.

Africanization is not a problem in east Texas and his number of hives is big. So his drones dominate the air well. Also there are few fives from other beekeepers in his area.

 Preparing cellbuilders in early March with colonies that stayed in Texas when the main part went to California.

Securing cellbuilding

In a commercial operation every part in the system have to work good enough to make the system work and bring food on the table. One part that is maybe more critical than others is cellbuilding in the queen breeding part.

European Foulbrood has grown to a persistent problem in America. It may well bee due to increasing amounts of chemical residues in for example wax combs putting higher pressure on the immune system of the bees.

Chris will not have the chemical residues from miticides, which may well help his bees keep a better standard on their immune system than bees in other commercial outfits. Still he can during springtime at just the time of cellbuilding experience some problems from European Foulbrood. To be sure he will be able to produce the number of queen cells he needs, he gives the colonies involved some tetracycline in spring. That takes care of this problem efficiently. This is the only drug he uses.

 Colonies prepared for going from Texas to South Dakota for honey production during summer.

Summer in South Dakota

Colonies that have collected enough of honey for a food reserve are shipped to South Dakota for the clover flow, starting early May. Or they may stay in Texas longer for the Chinese Tallow tree bloom. It is often a difficult decision which will give the best flow.

 After harvest in October iSouth Dakota. Honey supers are removed.

Winter in Texas

Harvesting of honey may begin in July and go through October in South Dakota. The bees are fed if necessary, then shipped to Texas early November, hopefully before the first blizzard in South Dakota.

 544 colonies loaded for transport from South Dakota to Texas in November. Another 544 colonies are waiting to be loaded.

Annual losses

During summer about 20% of the colonies are lost due to queen problems. At least partly these queen problems may come from the rough circumstances in the pollination services environment. Pathogens and chemicals picked up there. In January the die offs are taken care off, as well as the bees alive. If necessary colonies are fed. Winterlosses and losses experienced after the almonds in California can together be 10-20%.

This makes a total annual loss of about 40%, which these days is the average in America, wheather you treat against mites or not. Quite some years ago now Chris had a “CCD-year” with 70% losses. But weather was favorable and he could recover colony numbers from remaining colonies in one season.

40% losses is a little too high, but up to 30% are okey for Chris in his management system. Actually some amount of losses are more or less needed to weed out the worst colonies and multiply the best to improve the stock continuously and keep the numbers stable. Also to minimize the swarming through making nucs. He is not into selling colonies or queens. He gets his income from pollination services and honey production.

Hive configuration

Beekeepers love to discuss different details in their management system. One is the hive configuration. And you can have quite animated discussions going on concerning how good or bad this or that part is, for example 8 or 10 frame boxes and medium or Langstroth boxes. What you many times forget is that each part of a management system, including the hive configurtaion’s different parts, is a result of this whole management system in which each part fits well enough for the beekeeper. If you change one part, you may have to change also other parts to make the system work well for you. And special circumstances for you may play a role why you have chosen the solutions you use.

Chris Baldwin uses a 10-frame system with a shallow box (5 & 11/16”; frame 448 x 137 mm) on the bottom. It is always there. It’s kind of an expansion space which the bees use as they want, more or less without control from the beekeeper. The bees remodel, tear down and build back, the combs in the frames there. Sometimes they are bad in shape, sometimes a lot of drone comb, sometimes good looking well used by the bees.

The next box is a Langstroth deep with 9 combs (frame 448 x 232 mm) and a plastic division feeder. It’s tight, but that keeps out burr comb. When moving combs the feeder is first taken out to make space for easier handling. This is the broodnest all the time. Then comes the queen excluder. The supers are normally 8 combs in 10 frame deep boxes and medium boxes (the latter frame 448 x 159 mm) with metal spacers. Almost no plastic combs are used, but wired wax foundation in wooden frames, since many years.

The bees

Colonies can grow very big on this set up. His bees uses the combs for brood efficiently. They are much more conservative, frugal with food reserves, than common Italians in America. He has always liked the darker kind of bees, Caucasian and Carniolan types. Today he has all colors. He started selecting among his bees creating his own stock many years ago. When the Russians came on the scene he started buying breeder queens of those and they changed the game concerning Varroa resistance. He refers to his friend Kirk Webster having the same experience using Russians.

Old combs

He uses no system for wax renewal. Well, he does in a way. After the queen breeding and nuc season is over, when a colony dwindle, for example looses its queen or having a failing queen, he doesn’t have any queen cells to save such colonies.

Broodnest boxes, deeps and shallows from these failing colonies go on top on other colonies as honey supers. After harvesting these boxes are extracted separately. The uncapper has adjustable cutting depths. When extracting brood combs he sets the uncapper on the deepest cut settings. It really cleans up the oldest nastiest comb.

Many of his brood nest boxes stay out in the field for years, but a certain number do get extracted and thus cleaned up quite a bit. He only cull combs that look horrible or have broken frames. Most of his combs are more than forty years old.

Nucs

He in first place uses the extracted brood combs when making nucs. He starts the nucs with three good deep brood frames and fills up the box with extracted deep combs and maybe a food comb. This box is put on a shallow extracted box. The nuc gets a ripe queen cell and maybe a good feed.

Broodnest

This hive setup, which has a smaller brood nest than many others use (many use two deeps), works fine in his management system. As annual losses are somewhat high (which is the “normal” average in America) many nucs are made. Still the colonies have time to grow to be strong enough for both pollination and honey production. And this is done just perfect with this 1 and ½ box broodnest setup. When he moves hives, he can take a bigger number, 4 stories with 4 hives on a pallet, 544 on a truckload.

Cellsize

Chris doesn’t really care about cellsize. If he did he maybe would have to change management system when it comes to wax renewal. He hasn’t found any reason for using more labor in this part of his beekeeping.

So what is the cellsize in his combs? Today when he buys wooden frames with plasic foundation (these are cheapest and quickest to get at work into the system), most common is 5.4 mm, to begin with. Forty years ago who knows, maybe 5.2 mm was what was bought, (sizes 5.1-5.6 was available). But during the years cell volume has shrinked of course due cocoon residues. When old combs have been cut down, the cell bottoms have been left untouched. The parts of the combs closest to the midribs are “smaller cell” still, by the added cocoon residues. But the compactness of a real small cell comb is not there (more cells per area unit).

Living life

Beekeeping makes you nature focused and Chris often observes wildlife while working the bees. Deer, antelope, hawks, eagles, owls, praire dogs, coyotes, pheasants, grouse, badgers and so on. He once saw six bull elk out on the praire. At another time a golden eagle carried off a coyote. The land in South Dakota isn’t as flat as it appears many times, but it’s so treeless that you often can see horizon to horizon.

What about next season then? Weather comes up differing with cold and heat, drought and rain. And we need rain too besides sun. Next season will always be better!

Chris Baldwin is doing his share in putting food on the table in US through his bees’ pollination services, and yes, somewhat also on many other tables around the world that import almonds.

Struggles for the survival of honey bees

S SB

SB is a relatively new and dedicated beekeeper in southern Germany. She is interested in different kinds of bees and their place in the ecological system. I asked her to tell her story and her struggles helping her bees to survive and thrive on their own as much as possible without chemicals. She writes:

After watching wild bees for some years I wanted to have honeybees and took lessons given by an organic beekeeper. In the year 2014 I bought my first colony from him. It was a Carnica cross on natural comb, built by the bees without the help of wax foundation. They had been treated with oxalic and formic acid against the varroa. But they were sick anyway!

S Natural comb My first colony was a Carnica (Carniolan) colony on natural comb.

I tried to find a way out of this chemical strategy that seemingly didn’t help. I got some information on internet and started watching how bees defend themselves against illnesses. I don’t want to have them close to other bees. I tried to help them with sugar powder dusting to rid them of the mites sitting on bees. After treatment with formic acid in summer, they had a natural downfall of 30 mites per day. After sugaring the whole hive ten times with 2 days in between the natural downfall of mites were 5 per day. This involved a lot of work and still didn’t do the job. The bees had chalk brood too!

I measured cell size on their natural comb. It was 5.0 mm in the brood area, 5.4 in food area and drone cells began at 5.6. All honey was taken when harvested, so they lived on sugar syrup for a long time of the year. They died in february 2015, not having enough bees to warm the hive!

S AMM queen The AMM queen

I had found some contacts through internet and was able to get 4 hives in 2015 which weren`t treated with chemicals for some years. One was of the dark bee Apis mellifera mellifera (AMM) , three were Carnica (Carniolans). I made some splits and wintered 3 of the AMM origin and 5 of the Carnica origin.

The former owner had a crisis being the victim of a migratory beekeeper whose hives most probably caused reinfestation bringing a lot of mites into his hives. He overcame this crisis combining the weakest of his hives, so they became strong enough to defend themselves. Some survived. In some of these he introduced a AMM variety of queens that had a reputation of being more resistant.

My aim was to follow Dee Lusby`s in Arizona way of beekeeping as much as possible (http://beesource.com/point-of-view/dee-lusby). Using small cell foundation, leaving with the bees enough honey for food, using so called housel position of the combs, what she calls unlimited broodnest and using no treatment (if possible).

S Carnicas Now I have 11 colonies and high hopes.

All 8 hives survived winter, but in spring 2016 I had to eliminate one of them because its bees were too susceptible to virus (another than DWV). I have made some splits and have now in May 11 hives and high hopes. The bees are my teachers. I want them to survive.

S hygienic The AMM I have are showing hygienic behaviour against mites in the brood. Now I have seen it also in my Carniolan crossings (the picture).

I don’t do drone brood cutting as I want the mite to continue being a drone parasite in first place and not a worker bee parasite. I’m happy to see more and more of hygienic behavior against the mite, also in drone brood. Now also in the Carniolan crossings.

At last I want to quote Kirk Webster (http://kirkwebster.com):

“Beekeeping now has the dubious honor of becoming the first part of our system of industrial agriculture to actually fall apart. Let’s stop pretending that something else is going on. We no longer have enough bees to pollinate our crops. Each time the bees go through a downturn, we respond by making things more stressful for them, rather than less – we move them around more often, expose them to still more toxic substances, or fill the equipment up again with more untested and poorly adapted stock. We blame the weather, the mites, the markets, new diseases, consumers, the Chinese, the Germans, the (fill in your favorite scapegoat), other beekeepers, the packers, the scientific community, the price of gas, global warming – anything rather than face up to what’s really happening. We are losing the ability to take care of living things.”

We are at big risk losing the ability to take care of living things. Thank you everyone who is helping me to improve myself as a beekeeper.

The first bees in spring

VårVatten Water soaked up in old pieces of branches is tasting yum yum.

Yesterday March 20 in the middle of the day when the sun warmed the ground and the air, 8°C (47°F) in the shade. The first day of the year when bees collected water – in the yellow little wheelbarrow of my grandkids – and pollen in the spring flowers in the gardens, mine and my neighbors.

VårKrokus Pollen is best. Good for you too.

Lovely spring – life awakens for real when the bees are flying freely and prepare for summer!

A passionate treatment free beekeeper 

Cory Stevens lives in southeast Missouri. There are some hives of hobbyists some miles from him. A larger beekeeper is 7-8 miles from him, but he uses Cory Stevens’ queen cells.

Cory family The whole Stevens family works together

Started with resistance traits

Cory Stevens ceased treatments for Varroa mites in most of his then 20 colonies 8 years ago.  6 years ago the number had grown to around 45 colonies. Then a few got some formic acid. Then no more treatment. When he stopped treating he had acquired queens of different origins with resistance traits, VSH from Tom Glenn and Pol line Hygienic Italians crossed with local ferals.

Cory Hive&comb Healthy colonies are the base for a thriving bee operation.

Low winter losses initially

Initially he had very low annual losses. He has brought in new stock every year besides breeding from his best lines. This hasn’t been good for the development of his stock so he has stopped that and will focus on selecting from his own best colonies. He will evaluate the need for bringing in new stock again later.

Cory odlingslist He will now focus on breeding from his own selected lines.

 

Increased winterlosses

Winter losses has always been lower than average nation wide. But the last years it has reached 30%.The winter of 2014-15 he lost 60% of 95 wintered. 45 of those (47%) were too small 5-frame nucs. The winter was severe and all of those nucs died. He says it was his fault, not the bees’. The winter losses 2015-16 will be much lower, it looks like cose to 20 %.

Initially some viruses

In the beginning when he saw more than a few bees with crippled wings (DWV) and K-wings (KWV) two different viruses, followers of Varroa and Tracheal mites respectively, he requeened those hives. Today he never sees any crippled wings. A few K-wings can be seen.

Removal of infested drone brood developed

Initially he didn’t see removal of varroa infested drone brood by the bees, only Varroa infested worker brood (in which the mites have offspring – VSH). But after breeding from the best survivors without any treatment he has seen this trait developing. He thinks that’s good as Varroa prefer drone brood and should continue doing it leaving as much worker brood as possible alone.

Cory drönarpuppor He has developed his stock to remove Varroa infested drone brood. It has simply turned up when breeding from the best survivors.

Some characteristics

He doesn’t use small cell combs, but standard rite cell foundation. He does use screened bottom board on several hives, but he doesn’t think they contribute that very much to Varroa control.

Planned focus

This season he will check natural downfall to look for the percentage of mutilated mites. He will also be utilizing liquid nitrogen to test for hygienic behavior for breeding candidates. Some of his virgins will be inseminated with semen from ankle biters (mite ankels) from Purdue University to test if this will contribute to his stock. He will also put out more swarm traps to hopefully catch feral swarms.

The goal

Cory wintered 120 colonies last autumn. The goal now is adding 25-30 per year until he reaches 5-600. Then he will “retire”.

More Varroa resistant bees

Darrel Jones lives in a rural area in northern Alabama. He is an enthusiastic grower of heirloom tomatoes, http://www.selectedplants.com/ Being a beekeeper as well is a natural fit with his gardening activities. Keeping bees treatment free was his goal from the time he first saw varroa mites in 1993.

Darrel Brandypeace Brandypeace, an heirloom tomato of Darrel Jones.

In 2004 he found a single feral swarm that showed significant varroa tolerance. He saw a lot of hygienic behavior and uncapped pupae with mites combined with very low overall mite numbers. It showed some unwanted characteristics as well with a high stinging tendency and yearly swarming. He concluded that the swarm was a combination of typical Apis mellifera mellifera with Italian bees. The bees flew at low temperatures and overwintered on very small amount of honey reserves.

Digital StillCamera A feral swarm

Combination partner

He purchased 10 queens of mite tolerant stock from Dann Purvis and used them as drone source colonies next year when he raised queens from his feral tolerant swarm. A couple of years he deliberately encouraged his new colonies to swarm planning they would stay in the vicinity and establish a good buffer of resistant drones for his virgins to mate with. He pushed more than 60 swarms into the woods.

Darrel Purvis

Darrel says there are many feral bees living in the forest around where he lives. And he catches some feral swarms in swarm traps every year. He could easily catch more if he wanted to.

Darrel natur Forest area in Alabama.

Breeding better beekeepers’ bees

There are about 100 managed colonies some miles east of him, but they are far enough away that there is no risk of interfering with the matings of his virgin queens. His conclusion is that they don’t interfere with the matings of his virgins. At least to any degree it matters.

Today he has 14 colonies in four apiaries. One apiary is far away (200 km) from any other bees including his own. This apiary gives him possibility to mate virgins somewhat differently or with an experimental drone source.

 

Bringing in external mite resistant stock

In 2011 he bought 3 queens from Mike Carpenter. Mike has been selecting for bees that groom and injure mites (Allogrooming, bees grooming each other from mites). Darrel wants to combine different varroa resistant traits in his stock and also reduce stinging tendency and swarming behavior.

He bought 3 queens from Bweaver in 2015. These bees are advertised as treatment free and from evaluation, are very hygienic. He found the resulting colonies to have good temper but they produced many swarms out of the normal swarming season.

The traits he is selecting for in his breeding are decent honey production with at least 60 pounds per year, very high mite tolerance, good quality honey, and overwintering with small clusters that build up very fast in spring. He selects against high tendency to swarm and aggressive behavior. He is not satisfied here yet, but working on it.

 

Africanized bees

Africanized bees are not currently present in North Alabama. Cold winter temperatures will prevent highly Africanized stock from surviving in his climate. They probably will be able to survive if crossed with bees that form clusters and winter well.

Bweaver is situated in Texas, declared as heavily Africanized. Their bees show significant introgression of traits but without the increased stinging impulse typical of Africanized bees. Darrel has decided to replace the 3 queens he bought from there, with his own stock, which winters better. He says Africanized bees have some good traits that could be exploited in combination breeding

 

Spreading the stock

His goal is to spread treatment free stock in the surrounding area. For this reason, he has sold a total of 25 colonies to 3 local beekeepers. They too are also keeping their bees treatment free. Darrel has an agreement with these three beekeepers to share stock when it comes to raising queens from the best breeders. In 2016, he plans to make another 10 colonies to start other beekeepers with mite tolerant bees.

 

Cell size

He uses standard Langstroth equipment with 11 frames (instead of 10) and 31 mm end bars (instead of 35 mm). He also uses small cell 4.9 mm wax foundation. He has a few colonies on 5.3 mm cell size and sees no difference in varroa tolerance or honey production. But the large cell colonies build up slower in spring. This is a bad factor for him and he doesn’t produce any more colonies on 5.3 mm.

Darrel Cellmätning How to measure cell size. You can do three ways on a comb, or foundation. Two ways diagonal as well as straight.

 

Infestation level

Darrel does not do any mite level checks. They are not necessary as he never has seen any big die offs or any bees with virus or wingless bees with DWV. He did check one random colony in 2014 to see how many mites were dropping naturally. Some other beekeepers had asked because they thought his bees were full of mites. This colony dropped 15 mites in 48 days proving them wrong. This makes a downfall of 0.3 mites per day.

 

Conditions and characteristics for Darrel Jones’ resistant stock

  • His area is relatively isolated from nonresistant bees.
  • A large population of feral resistant bees are established in the vicinity. This is quite a different situation compared especially to many European areas with bees.
  • He began with bee stocks that have excellent resistant traits.
  • He is not bringing in non-resistant bees in the form of queens, nucs, or colonies.
  • He is at most trying a few new queens from outside per year.
  • Small cell size is positive for colony build up but not necessary for resistance.
  • No treatments of any kind have been used for the last 11 years. Natural mite resistance in his bees is enough that they are thriving.
  • Yearly sales of honey pay all expenses to sustain his beekeeping activities.

 

 

A locally adapted Varroa resistant bee stock

Reid Hives

http://www.happyhollowhoney.com/

Richard Reid in a Virgina rural area in the US began with bees 1973. Beekeeping was simple, almost only it consisted of putting on and removing supers.

By 1995 all of his bees died due to the Varroa mite. He didn’t like drugs and didn’t use any in his colonies. A package bee colony he bought also died, after only two months. He couldn’t take more, dropped the bees, and devoted himself entirely to his construction business.

 

Survivors

After a number of years, he discovered that a few swarms had settled in a few stacks of supers. He went and looked at these wild bees sometimes and saw that they lived on. They lived and swarmed for 12 years unattended. After a few years he was encouraged and decided in 2008 to give beekeeping a chance again.

Reid feral12 One of the feral swarms settled in his stacks of supers.

There are no big farms nearby (thus not so much of agriculture chemicals) and some smaller beekeepers were at least 3 km (2 miles) away from his bees. So the conditions for healthy beekeeping was good.

 

Come back

He took care of the two feral swarms and began to expand the number of colonies using these, VSH, and Russian lines. He decided again not to use any kind of chemicals against Varroa. He didn’t buy any package bees or colonies from other areas (well, none at all). He multiplied his own colonies.

Reid SwarmtrapBox He also catches some swarms.
He bought however queens from different places which he believed to have resistance characteristics, VSH Carnica, Russian bees, and survivor bees from different places. He never monitored mite levels in his colonies.
Annual losses since 2008 have been between 10-15%, except after the winter of 2012-13 when 40% died. Each year, he had seen some wingless bees in some colonies. After the winter with the big losses he hasn’t seen any wingless bees. He has since bought fewer queens from outside and bred most from his own.
Every year he breeds from several “lines”, now about 18 of them. Queens are mated in his home yard. He makes many splits every year. Some of these get pupae of those he breeds. Some splits rear queens themselves.

Reid queen One of his queens.

 

Increasing

2015 he wintered 75 production colonies and 105 nucs. 30 of the colonies are kept in the vicinity of his home yard. There he keeps 17 of them. The nucs are also kept close in the home yard.

Reid Hives&Nucs Some of his nucs and production colonies in his home yard.

He has altogether nine apiaries. He wants to have at least 10 colonies in each apiary, but he hasn’t reached that goal yet for most of them. He is now aiming to increase his number of production colonies to 100 and the nucs to 150, as well as an additional 2 apiaries.
Regarding cell size, the great majority of brood frames in his colonies are Mann Lakes standard plastic frame with plastic foundation. (http://www.mannlakeltd.com/beekeeping-supplies/category/page19.html) The cell size on those are 4.95 mm. The rest of the frames in the honey boxes have a larger cell size. Some frames are started without a foundation. The intention is that the bees will build some drone comb there. He wants to flood the area with desired drones. But bees are also building fine worker brood in some of these frames, especially in the nucs.

 

Selling nucs, queens and honey

He split the nucs in the spring and sells one part with the queen, saves the rest to build up a new nuc. It’s usually used for a mating nuc or nuc production depending on the season.

Reid Brood One of the worker brood frames built by the bees without the help of a foundation.

He usually has a very good spring flow that will carry the colonies through the rest of the year, but there’s usually a dearth in the summer, which means the nucs may need to be fed sugar syrup to prepare for winter. 2015 he had so much spring honey production, he only had to feed about 20% of the nucs for winter.

He says that now he has enough resources so he can share honey between production hives and nucs. Thus he feeds less. He usually only feeds a handful of production hives (mostly new ones) to prepare for winter. The production colonies go through winter on large supplies of honey. Quite often he has extracted honey in April. You can say he uses his colonies as a honey storage.

 

Richard Reid’s locally adapted Varroa-resistant bee stock

• There are at least 3 km to apiaries with other bee colonies than of his stock.
• The area where he lives is not a highly developed agricultural area, so there is not so much agricultural chemicals there as can be the case in many other areas.
• He started with bees which had a degree of varroa resistance.
• In most brood combs, he uses small cell size.
• He doesn’t bring in colonies (such as packages) from outside the area with his bees.
• He splits nucs (with new queens from his breeder queens) to make more nucs, which later become production colonies or bees for sale. He also splits a few of the smaller, less productive, production colonies to create new nucs.

• He doesn’t requeen on a regular schedule. He has some colonies with queens finishing their 3rd and 4th season.
• The bad colonies die or have their queens replaced.
• He breeds after queens from many different lines each year.
• He tries each year just a few queens from other breeders.

 

Encouragement to all beekeepers

Richard Reid is one of several beekeepers who has managed to breed a varroa resistant locally adapted bee stock. Let us be encouraged by that and despite what some other beekeepers of all kinds say, that this is not possible. How can one be so ignorant to what others achieve? Make use of what you can of the experiences of Richard Reid.
When he started, he hadn’t many bee colonies, so even if you have few colonies you can do something.

Perhaps your circumstances are such that it is good to monitor mite levels in your colonies. There are various methods, for example the Bee Shaker (http://www.elgon.es/diary/?cat=85).

Don’t take it as a failure if you choose to use pesticides at times. Each of us decides what is appropriate for ourselves and our bees, in consultation with the laws of your country. A treatment that doesn’t involve any chemicals at all is to remove all capped brood (worker and drone brood) twice, a week apart. It is effective, weakens the bee population as well though, but not the health of the bees. The bad colonies get new queens as soon as possible.

Next season will always be better!

Feedback on Elgon queens

GM 243-daughter Karin is a new beekeeper. She got thrilled when I took the feral swarm from the wall in one of her houses, so she wanted to keep bees. And got a daughter queen from the feral swarm. She is very happy with that. GM in Germany got one daughter too to this swarm. It’s the one with him that has no mites in the natural downfall.

I make queens for my own beekeeping operation in first place. I make some more to share with other beekeepers, selling them in Sweden and other European countries. I appreciate feedback from those I sell to. I hope it can help me in my work developing the Elgon bee.

One of the beekeepers I get feedback from is GM in Germany (of some different reasons he just now doesn’t want to use his name). He got some queens in 2014 and some in 2015.

He doesn’t like to treat bees with chemicals and looked for alternative ways of treatment free beekeeping. He wanted to start with queens that probably had better resistance traits than average against the Varroa mite.

He has one apiary at his home. Also he has a couple of new places relatively isolated from other bees. There are some colonies of Carnica bees not far from his home apiary. And quite some Buckfast colonies about 1 km away. So his home yard is not isolated.

One of the Elgon queens he got in 2014 was very promising with lowest natural mite downfall per day and good vitality compared to all his other hives. He succeeded in getting a few daughters from this queen. The original good queen was lost in a pesticide incident in May 2015.

In 2015 GM got some more Elgon queens. He also catched some carnica swarms. He wintered 15 colonies in 2015. In his home apiary he placed many new smaller colonies. He placed his new Elgon queens and daughters of the best one from 2014 in splits in his home apiary. All colonies in his home apiary are established on small cells, 4.9 mm. None of the colonies here was treated with chemicals, organic or not, against the Varroa in 2014 or in 2015. In autumn in 2014 he made a capped brood removal (both worker and drone), but not in 2015.

GM says it’s essential in treatment free beekeeping to have an understanding of the resistance status of the colonies to be able to act at the right time in a right way. Therefore during the second half of the season of 2015 he counted the daily natural downfall of mites in his home apiary. Each month he counted the downfall several times. Of the resulting daily downfalls, he calculated an average for each month.

GM finds mite count of natural downfall to be a tool for judging the resistance quality. Other tools he finds valuable are looking at hygienic behavior concerning mites in worker and drone brood, eventual presence of wingless bees (DWV), ability to produce drone brood late in season and ability to draw small cell foundation (4.9mm) correct.

GM Bald brood  This is sometimes called bald brood, a type of hygienic behaviour. The bees are identifying capped brood with mites and uncap such cells, sometimes recap them and uncap again, sometimes keep them this way, sometimes clean out the infested cells. As can be seen there are pupae in the uncapped cells, one almost mature. Bald brood can be seen together with colonies showing high VSH%, also with colonies with lower VSH. VSH can maybe be seen as a special case of this kind of hygienic behavior, uncapping and cleaning capped brood cells in which a mite has offspring. This is a daughter colony of a colony with high VSH.

GM Utrensad puppa Observing cleaned out pupae is most probably a sign of the colony showing some kind of hygienic behavior towards Varroa mites in the colony.

GM focus on identifying the best colonies concerning resistance traits (for breeders next year), the loosers which will be requeened as soon as possible and the medium performers that maybe have a chance to learn how to fight the mite properly. Keep a special eye on those one he says, if they adapt well.

Average E1 (S241) E2 (S241) E3 (C243) E4 (F1 of 242) E5 (F1 of 242) C1 X1
Aug-15 1 6 0 2 3 10 1
Sep-15 1 24 0 4 2 11 2
Oct-15 1 3 requeened 0 15 1 16 4
Nov-15 1 13 0 8 1-2 14 2
Dec-15 1 1 0 2 1 5 1
Jan-16 0 0 0 1 0 6 0

The table is showing the average monthly natural downfall of mites, August-2015 – January-2016. E3 has a sister queen to the one in Karin’s hive.

About 25% of the mites from C1 (only from C1) at the end of December and January were lighter colored young mites pointing to brood in the colony. The table shows the monthly average daily downfall of mites from the colonies in the home apiary. (E2 was moved to another apiary and combined in late October.) GM used the overwintered Carnica colony, C1, to make many splits during 2015. This colony showed some DWV-bees (crippled wing bees) in early spring. They disappeared later, probably with the help of making many nucs and the appearance of drone brood. This colony also showed some hygienic behavior, uncapping brood with mites.

X1 is a swarm (looked like a mix of Carnica and Buckfast) he catched 2015 and hived on drawn small cell 4.9 comb. E4 and E5 have daughter queens of his Elgon queen from 2014. E1 and E2 had sister queens from 2015. E3 is a daughter (2015) from a feral colony in Sweden highly influenced of Elgon heritage.

You can speculate if the figures of E2 are a result of mites coming with the split from the C1-colony, from mites from the neighbor’s bees or less good genetics, or a combination. In any case the colony shifted its queen in late in autumn, and succeeded in getting mated in early October (maybe with Buckfast drones, as Buckfast colonies more often have drones later than Carnica)! The colony E2 was now small and was united with a small colony in another apiary. E2 had initially a few DWV-bees.

E1, E3 and E5 especially, seem to be interesting to watch the development of in 2016, test for VSH and maybe breed from.

Treatment select for increased reproduction rate

Varroa mites multiply in bee larvae. After they come out of the cell when the bee is fully formed, they sit on the adult bees and suck hemolymph.

It was observed many years ago that during the brood period of the bees, 2/3 of the mites was found in the capped bee brood cells while 1/3 was on the bees.

VarroaBin2 Varroa mites on bees. Many years ago 1/3 of the mites were sitting on bees while 2/3 was found in the capped brood. Today this has changed to 15% and 85%. (Photo: Anders Berg)

If the mites had been sitting longer time on the bees than they did, before they returned into a brood cell, a greater proportion than 1/3 had been found on the bees. If they had been sitting less time there would have been a smaller proportion found on adult bees. The shorter the time the varroa mites are sitting on adult bees, the faster they return into a new brood cell to reproduce. This would increase the speed of varroa reproduction in the bee colony.

It is thus from the beekeeper’s and the bee colony’s point of view desirable that the mites are sitting as long as possible on the bees, resulting in a slower development of the varroa population. So, if the proportion of mites had been ½ on the bees and ½ in capped brood, this would have been better than that found for a number of years ago when varroa mites had arrived.

In early December 2015, two professional beekeepers from the Spanish mainland came to the small island of La Palma, one of the Canary Islands, and lectured on the varroa problem (http://archiv.resistantbees.com/phoretische-varroen). One of them was Manuel Izquierdo Garcia, a biologist at the University of Seville. (Thanks Rüdiger Dietrich who drew my attention to this.)

30 years ago when varroa mites came to Spain, the proportion of mites on the bees was 1/3 and 2/3 in capped brood. During the past 30 years, the mites’ behavior have changed. You could say that during the 30 years of conventional treatment of bees to kill mites, the mites have responded by spending less time on the bees to accelerate their reproduction rate. They have also changed the place on the bees they usually sit, from the abdomen to the middle part of the bee.

The result of this change has resulted in 15% are found on the bees (previously 33%) and 85% in the capped brood (previously 66%).

VarroaYngel2 Mites are sitting shorter time on the adult bees. Thus you find at a given time 15% of the mites on the bees today and 85 % in the brood. This have increased the reproduction rate of the varroa population.

Increased treatment

This change has consequences for beekeeping. It explains why we in Europe have had to increase treatment to kill mites. There are examples of recommendations in several countries where the fight starts in spring and continues throughout the season. And anyway, or should one say, maybe sometimes also because of this, the bees have difficulties to survive.

Powdered sugar

Some types of treatment will also be less effective due to this change. Treating with powdered sugar, only kills the mites sitting on the bees. One must fight very often if powdered sugar should have any effect of relevance.

Oxalic acid

If there are still small areas of capped brood when one uses oxalic acid against the mites, the oxalic woun’t have the effect one wants. This becomes more relevant when climate change means warmer winters, as it will be more common with brood in winter times, the time when oxalic usually are used. It becomes even more important keeping bees that really have brood-free periods during winter, also for treatment free beekeepers.

Treatment is a dead end

It is becoming increasingly clear that it is a dead end using all kinds of chemicals against varroa mites. And it is with the increased reproduction rate of the mites more difficult to select resistant bees and get areas with treatment free bees – which is the solution.

Focus on varroa resistance

All this show how important it is to focus on producing as varroa resistant bees as possible and develop management methods without chemicals. It is important that all beekeepers understand the problem and are involved at least somewhat.

Every beekeeper can at least try to identify which of his or her bee colonies are the least good in resisting varroa mites and replace the queen(s) in those. The simplest way is to just remove the queen in such a colony and let the bees rear a new of their own. It is not the best method, but a start. Then you can make more steps in improving your bees, depending on interest and opportunities.

The bee shaker and varroa resistance

Skak botten 2lc One mite from 300 bees.

I understand that sometimes it’s a good idea to get an idea of the infestation level of varroa mites in bee colonies. You can take samples from a couple of colonies in an apiary to get an idea when to treat. But my first concern is breeding varroa resistant bees.

I have never monitored the varroa infestation level in my colonies. I haven’t had time and I haven’t found any reason for it because I thought I had found a good compromise – treating with Thymol when I saw wingless bees on the hardboard in front of the hive entrance, checking every 10 days or so.

 

Good results up till now

I give a colony one or two pieces of dish wash cloth containing 5 grams of Thymol each when I see wingless bees crawling on the hard board in front of the hive. But this means I don’t treat every colony at the same time (hopefully some not at all in a season). This results in some colonies with higher mite loads not showing wingless bees yet. So these colony (-ies) will through reinvasion increase mite levels again quite quickly in those colonies recently treated.

But this way I’ve been able to develop more and more resistant bees and still produce a good crop. There have been a number of bees not producing any honey. Winter losses have been reduced from 30 % to 10-15 % (except the first year with varroa trouble when I lost 50 %).

The bees have been better chasing mites and remove infested brood. I’ve got good reports from for example Poland and Germany of low populations of varroa in colonies headed by Elgon queens, compared to other bees. And the VSH trait is becoming better and better. Daughters of my colony with the highest VSH % (80) gave colonies that in Poland dropped 2-5 mites after effective treatment while other colonies dropped more than 1000.

 

Thymol is useful but hinders total adaptation

I now have been aware that by having this regime I have a constant quite high varroa population in the apiaries as a whole, and thus probably a climbing virus pressure. In a way this is good as selection is done also on virus resistance.

How do I know that? Now when I’ve used the bee shaker somewhat this year I’ve seen that colonies may show wingless bees (DWV-virus) at low mite infestation. Such low infestation you didn’t expect them to do so, sometimes even as low as 2 % infestation (a daughter from a colony with high VSH trait [80%]! This experience and others similar, raise the question if very high VSH comes with higher susceptibility to viruses.). Wingless bees at 2 % infestation is totally different from a report I’ve got from a test further down in Europe. (There they normally treat effectively every year.) In that test where they didn’t treat at all, my bees didn’t show any wingless bees at 35% infestation while other bees had a lot.

 

How to explain the high infestation level in the test

Now I have to try to explain why my good bees could arrive at 35 % mite infestation. This is interesting and brings up another topic as well. The importance of memories of the worker bees (their knowledge how to chase mites), not only their genetics (and epigenetic history). My queens in this test down in Europe were introduced to bees that had not been selected the same way as mine, and those bees had been treated effectively every year. The bees could probably not chase mites as well as mine.

But of course the genetics from my queens would more and more influence the workers to build up a better behavior when it comes to chasing mites. When the bees have arrived at a good mite chasing mood they learn new bees born in the colony what they have achieved, more than what just come directly with the genetics. In Norway with Terje Reinertsen and Hans-Otto Johnsen experiences are achieved pointing strongly to this.

In an apiary where many colonies are non-resistant as in this European test, you get a mixture of all bees in the apiary through drifting and robbing. This is taking place more and more when the mite populations in the colonies rise. As it did in this test as the colonies were not treated at all.

In a situation when colonies are receiving a lot of mites from neighboring colonies, even the very best kind of mite chasing behavior is maybe not enough to keep mite levels low.

In the test apiary previous to this test, effective treating every year had kept the mite and virus levels low, so the mite population could grow much in the test without showing wingless bees – like in the beginning when the mite first arrives to an area. Then the virus levels are usually very low and there could be 10 000 mites and more in a colony without any signs of viruses (documented case in Sweden in 1987 when the mites were first detected on the island Gotland in the Baltic).

The bees in this test were on 5.5 mm cell size, while my bees are kept on 4.9 mm.

 

Also Thymol hinders total adaptation

I have talked to some beekeepers whose bees are totally treatment free since many years (Hans-Otto Johnsen in Norway, Richard Reid in Virginia and Myron Kropf in Arkansas). Their bees have now small populations of mites and are showing no wingless bees.

I have come to realize that also Thymol is a chemical that hinders the bees to fully adapt to handling the mites successfully on their own. It is in first place the epigenetic adaptation I have come to think of that is disturbed when alien chemicals (like miticides of all kinds) are present. Epigenetic changes take place when a chemical change occur due to environmental changes, like for example the presence of the mite. (But it should be said also that if you use Thymol regularly spring and late summer in a system not selecting better bees like I do, winter losses can be kept low. I know because beekeeper friends do like this.) Also Thymol like other miticides is lowering the immune system of the bees.

How do I then integrate these insights to go further in becoming totally treatment free?

 

A new strategy to try

I’m planning a new strategy, at least to start with in one quite isolated apiary. I have to stop using Thymol. First though I think I have to knock down the mites effectively to reduce the virus level. And then get a better control of the number of mites and take action without any chemicals if varroa populations are rising too much in colonies.

 

The role of the bee shaker

Here the bee shaker will play a role. And I have looked more into how Randy Oliver uses it. It’s much easier to shake a frame of bees into a bowl or pan and then with a measuring cup scope somewhat more than a deciliter (3.5 oz) of bees and pour them into one half of the bee shaker, half filled with alcohol (for example methylated spirit or rubbing[isopropyl] alcohol). Then screw it together and shake for a minute before reading the result. Compared to holding the bee shaker close to a frame side with bees and pour bees into it moving it slowly upwards, the alternative of Randy Oliver is quicker (at least for me). The next step is to test the VSH trait in the best colonies.

Skak yngelrum Start checking from one side in the uppermost box with brood. The queen hopefully will run to the brood if she is outside the brood area (probably not). The comb closest to brood you check so the queen is not there. 

Skak deciliter Shake the bees into a pan or bowl. Scope up somewhat more than a deciliter of bees (3.5 oz)

Skakburk sprit Pour the bees into one of the halfs of the bee shaker, which is half filled with alcohol. Screw the other half tight on top. Shake it for a minute.

Skak botten1lc Turn the shaker upside down and continue shaking until all the alcohol has poured down. Lift it up against the sky and count the mites. This colony had 14 mites on 300 mites and it got two pieces with 5 gram Thymol each. It showed no wingless bees.

What I hated to do

So what I’ve done so far is something I hated to do. In one quite isolated apiary I used an effective chemical miticide (only this time I promised myself) in August 2015. I wanted to use something else than Thymol to give the bees a break from that chemical. And I wanted to knock down the mite population effectively to lower the virus pressure in the apiary. I collected the knocked down mites. (In the rest of the apiaries I plan at the moment to continue as before.) The colonies that had needed most Thymol earlier in the season had the highest downfall of mites. They got probably continuously reinfested from other colonies that happened to not show wingless bees while they anyway had quite high mite loads. The defense system of these quickly reinfested colonies was probably lowered by Thymol, which made this relatively quick reinfestation possible.

One colony that hadn’t needed any Thymol at all (and very little the year before) and still had given me 80 kg (175 lb) of honey with 20 kg (45 lb) left for winter dropped less than 200 mites. And this happened in this very bad season of 2015. This colony is of course a breeder for the coming season.

 

The new strategy

Next year I will in this new strategy apiary make splits from the best colonies and place them in the same apiary (or if the number is enough there, place in other apiaries). In the least good colonies in this apiary (those with highest infestation level) I will kill the queen and give them a ripe queen cell bred from a good colony in this apiary. I check the number of varroa (infestation level) with the bee shaker twice a season in all colonies in this apiary. Each time it will take about 5 minutes per colony. And I look for eventual wingless bees on the hard board in front of the entrances. Before the number of mites rise too high (whatever that is), or when I see wingless bees, I plan to remove all capped brood (worker and drone brood) once or twice with a week in between. I haven’t decided what to do with those brood frames yet. Any suggestion?

 

 

Cell size affects water content

I started taking down my bees to small cell size 15 years ago. 10 years ago I had combs with 4.9 mm, 5.1 mm and 5.4 mm cell size in the supers. At one time I did some measurements of moisture content in honey from the capped cells in supers.

The supers were square sized for 12-frame Shallows. Single walled wood, not very thick to keep the weight down. Almost all my supers are like that. I measured moisture content in honey from cells close to the top of the frame, in the middle. When comparing the different cell sizes in the same box it was done from two frames, comb sides next to each other.

What I found then was that the moisture content in the center of the box was 1% lower than from the outer combs. This was the case when all combs in the super had the same cell size. I speculated that this was due, at least partly, to the fact that the uninsulated walls of the super made the temperature vary more in the super during day and night, especially close to the walls. During nights water drops could well be formed on the outer frames. And the honey could thus take up more moisture.

The moisture content was then 1% lower in cell size 5.1 than in 5.4. And it was 1% lower in 4.9 compared to 5.1.

The moisture content was so low in the smaller cell sizes that I became braver to harvest combs that were not fully capped. I started harvesting whole boxes even if the outer combs was not fully covered or even 2/3 covered. Sometimes outer combs were and also are today only capped at the top. Shallow frames are low, 137 mm, so it will not be as large area of ​​non-capped honey compared to a higher frame where only uppermost part of the honey is covered.

Water content in my honey is usually around 16-17%, rarely above 18%, sometimes below 16%. Before I used small cell size, moisture content was often around 18%, even though I tried to harvest only capped honey.

Project with plastic frames and insulated boxes

This year (preparations began last year) we (I and two others) started a project to test a number of different things (will probably come back with a report). The project uses insulated plastic foam supers for 10-frame Medium frames (159 mm high). All frames are supposed to be plastic with plastic foundation. Two different cell sizes are used, 4.95 mm and 5.5 mm. Thus a group of colonies have only 4.95 and another group 5.5. Not all combs are completely that way in all colonies. Next year it will.
Vettenhalt Yellow plastic frames with 4.95 mm cellsize and black with 5.5 mm.

Low moisture Heather honey

This year cell sizes were somewhat mixed for different reasons, especially in supers. So when I harvested a number of supers with well capped Heather honey combs with different cell sizes in the same super I took the opportunity to measure the moisture content again in a similar way as 10 years ago.

This time, I could compare 4.95 with 5.5. And 5.3 with 5.5 (I had some plastic frames with cell size 5.3 also for a certain reason I will come back to in the report to come).
The notes I had from the test 10 years ago I have not found. But I found those I made this year. They are seen in the table.

Super

4.95 mm 5.3 mm 5.5 mm capped honey

uncapped honey

1

16.0% 17.0% X
2 16.5% 17.5% X
3 16.0% 16.2% X
4 17.0% 17.3% X
5 15.9% 16.0% X

 

Similarities and differences

The tendency that smaller cell sizes means less moisture in the honey holds. But the differences between cell sizes are smaller this time. Another difference is that the difference between the middle frames and the outer ones in supers with the same cell size was not found now with well insulated supers.

The difference between the cell sizes are greatest when 5.3 and 4.95 are compared. The difference between 5.3 and 5.5 was not as big (not per 0.1 mm cell size either).
The moisture content was for me surprisingly low considering that it was almost pure heather honey in the combs checked. Usually Heather honey has higher moisture content, probably due to it’s gathered late in season when temperature difference between day and night is bigger. But it was unusually warm in August this year when the Heather was in bloom and remperature was not very low in nights.

When trying to understand the results I think it helps being aware that when bee colonies build their own combs without the help of foundation many have observed they build (when they are adapted after a period of perhaps several years) mostly between about 4.7 and 5.1 mm cell size in the brood nest and 5.2-5.5 (approximately) in honey area.

When the bees have collected a lot of honey for the winter period, most of the empty cells are small. When spring comes the first brood is reared in small cells. Low moisture honey is closest to brood then. Is that of any importance for the bees? Later in season some brood is reared in slightly larger cells as well. Towards the end of the season the queen lays almost only in small cells again.